3 resultados para Silicate minerals

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This book contains maps, colored pictures and detailed information of minerals found in Iowa. It includes the localities of where they can be obtained and the characteristics by which they can be identified. This is part of the Iowa Geological Survey Educational Series 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A significant question is: What role does newly-formed expansive mineral growth play in the premature deterioration of concrete? These minerals (ettringite and brucite) are formed in cement paste as a result of chemical reactions involving cement and coarse/fine aggregate. Petrographic observations and SEM/EDAX analysis were conducted in order to determine chemical and mineralogical changes in the aggregate and cement paste of samples taken from Iowa concrete highways that showed premature deterioration. Mechanisms involved in deterioration were investigated. A second objective was to investigate whether deicer solutions exacerbate the formation of expansive minerals and concrete deterioration. Magnesium in deicer solutions causes the most severe paste deterioration by forming non-cementitious magnesium silicate hydrate and brucite. Chloride in deicer solutions promotes decalcification of paste and alters ettringite to chloroaluminate. Calcium magnesium acetate (CMA) and magnesium acetate (Mg-acetate) produce the most deleterious effects on concrete, with calcium acetate (Ca-acetate) being much less severe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most abundant clay mineral group in Iowa soils is montmorillonite, most commonly calcium-saturated (Hanway et al, 1960). The calcium montmorillonite-water system was therefore selected for detailed X-ray study. Montmorillonite is unusual among minerals in that it has an expanding lattice in the c direction. That is, upon wetting with water, the individual silicate layers separate to allow entry of water, and the mineral expands. Characteristics of this expansion are readily studied by means of X-ray diffraction: the X-ray diffraction angle gives the average layer-to-layer "d001" spacing for any given moisture condition; the sharpness of the diffraction peak is a measure of uniformity of the d001 spacing; and the intensity of the peak relates to uniformity of the d001 spacing and in addition to the electron density distribution within the repeating elements. The latter is embodied in the "structure factor".