4 resultados para Short-Pulse-Width
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Data sheet produced by the Iowa Department of Natural Resources is about different times of animals, insects, snakes, birds, fish, butterflies, etc. that can be found in Iowa.
Resumo:
This metric short course was developed in response to a request from the Office of Bridges and Structures to assist in the training of engineers in the use of metric units of measure which will be required in all highway designs and construction after September 30, 1996 (CFR Presidential Executive Order No. 12770). The course notes which are contained in this report, were developed for a half-day course. The course contains a brief review of metrication in the U.S., metric units, prefixes, symbols, basic conversions, etc. The unique part of the course is that it presents several typical bridge calculations (such as capacity of reinforced concrete compression members, strength of pile caps, etc.) worked two ways: inch-pound units throughout with end conversion to metric and initial hard conversion to metric with metric units throughout. Comparisons of partial results and final results (obtained by working the problems the two ways) are made for each of the example problems.
Resumo:
Concrete paving is often at a disadvantage in terms of pavement type selection due to the time of curing required prior to opening the pavement to traffic. The State of Iowa has been able to reduce traffic delay constraints through material selection and construction methods to date. Methods for monitoring concrete strength gain and quality have not changed since the first concrete pavements were constructed in Iowa. In 1995, Lee County and the Iowa DOT cooperated in a research project, HR-380, to construct a 7.1 mile (11. 43 km) project to evaluate the use of maturity and pulse velocity nondestructive testing (NDT) methods in the estimation of concrete strength gain. The research identified the pros and cons of each method and suggested an instructional memorandum to utilize maturity measurements to meet traffic delay demands. Maturity was used to reduce the traffic delay opening time from 5-7 days to less than 2 days through the implementation of maturity measurements and special traffic control measures. Recommendations on the development of the maturity curve for each project and the location and monitoring of the maturity thermocouples are included. Examples of equipment that could easily be used by project personnel to estimate the concrete strength using the maturity methods is described.
Resumo:
The effect of curing temperature, in the range of 4.4 to 22.8 degrees C (40 to 73 degrees F), on strength development was studied based on the maturity and pulse velocity measurements in this report. The strength-maturity relationships for various mixes using a Type I cement and using a Type IP cement, respectively, were experimentally developed. The similar curves for early age strength development of both the patching concrete, using a Type I cement with the addition of calcium chloride, and the fast track concrete, using a Type III cement and fly ash, have also been proposed. For the temperature ranges studied, the strength development of concrete can be determined using a pulse velocity measurement, but only for early ages up to 24 hours. These obtained relationships can be used to determine when a pavement can be opened to traffic. The amount of fly ash substitution, up to 30%, did not have a significant influence on the strength-maturity relationship.