3 resultados para Sensor Fusion
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Secondary accident statistics can be useful for studying the impact of traffic incident management strategies. An easy-to-implement methodology is presented for classifying secondary accidents using data fusion of a police accident database with intranet incident reports. A current method for classifying secondary accidents uses a static threshold that represents the spatial and temporal region of influence of the primary accident, such as two miles and one hour. An accident is considered secondary if it occurs upstream from the primary accident and is within the duration and queue of the primary accident. However, using the static threshold may result in both false positives and negatives because accident queues are constantly varying. The methodology presented in this report seeks to improve upon this existing method by making the threshold dynamic. An incident progression curve is used to mark the end of the queue throughout the entire incident. Four steps in the development of incident progression curves are described. Step one is the processing of intranet incident reports. Step two is the filling in of incomplete incident reports. Step three is the nonlinear regression of incident progression curves. Step four is the merging of individual incident progression curves into one master curve. To illustrate this methodology, 5,514 accidents from Missouri freeways were analyzed. The results show that secondary accidents identified by dynamic versus static thresholds can differ by more than 30%.
Resumo:
Report on a special investigation of the Region 4 Fusion Office in Atlantic, Iowa for the period March 1, 2006 through August 31, 2009
Resumo:
A good system of preventive bridge maintenance enhances the ability of engineers to manage and monitor bridge conditions, and take proper action at the right time. Traditionally infrastructure inspection is performed via infrequent periodical visual inspection in the field. Wireless sensor technology provides an alternative cost-effective approach for constant monitoring of infrastructures. Scientific data-acquisition systems make reliable structural measurements, even in inaccessible and harsh environments by using wireless sensors. With advances in sensor technology and availability of low cost integrated circuits, a wireless monitoring sensor network has been considered to be the new generation technology for structural health monitoring. The main goal of this project was to implement a wireless sensor network for monitoring the behavior and integrity of highway bridges. At the core of the system is a low-cost, low power wireless strain sensor node whose hardware design is optimized for structural monitoring applications. The key components of the systems are the control unit, sensors, software and communication capability. The extensive information developed for each of these areas has been used to design the system. The performance and reliability of the proposed wireless monitoring system is validated on a 34 feet span composite beam in slab bridge in Black Hawk County, Iowa. The micro strain data is successfully extracted from output-only response collected by the wireless monitoring system. The energy efficiency of the system was investigated to estimate the battery lifetime of the wireless sensor nodes. This report also documents system design, the method used for data acquisition, and system validation and field testing. Recommendations on further implementation of wireless sensor networks for long term monitoring are provided.