2 resultados para Seismic load, storey drift, lateral force, deflection, base shear

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The spacing of adjacent wheel lines of dual-lane loads induces different lateral live load distributions on bridges, which cannot be determined using the current American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) or Load Factor Design (LFD) equations for vehicles with standard axle configurations. Current Iowa law requires dual-lane loads to meet a five-foot requirement, the adequacy of which needs to be verified. To improve the state policy and AASHTO code specifications, it is necessary to understand the actual effects of wheel-line spacing on lateral load distribution. The main objective of this research was to investigate the impact of the wheel-line spacing of dual-lane loads on the lateral load distribution on bridges. To achieve this objective, a numerical evaluation using two-dimensional linear elastic finite element (FE) models was performed. For simulation purposes, 20 prestressed-concrete bridges, 20 steel bridges, and 20 slab bridges were randomly sampled from the Iowa bridge database. Based on the FE results, the load distribution factors (LDFs) of the concrete and steel bridges and the equivalent lengths of the slab bridges were derived. To investigate the variations of LDFs, a total of 22 types of single-axle four-wheel-line dual-lane loads were taken into account with configurations consisting of combinations of various interior and exterior wheel-line spacing. The corresponding moment and shear LDFs and equivalent widths were also derived using the AASHTO equations and the adequacy of the Iowa DOT five-foot requirement was evaluated. Finally, the axle weight limits per lane for different dual-lane load types were further calculated and recommended to complement the current Iowa Department of Transportation (DOT) policy and AASHTO code specifications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This report concerns the stabilization of three crushed limestones by an ss-1 asphalt emulsion and an asphalt cement, 120-150 penetration. Stabilization is evaluated by marshall stability and triaxial shear tests. Test specimens were compacted by the marshall, standard proctor and vibratory methods. Stabilization is evaluated primarily by triaxial shear tests in which confining pressures of 0 to 80 psi were used. Data were obtained on the angle of internal friction, cohesion, volume change, pore water pressure and strain characteristics of the treated and untreated aggregates. The MOHR envelope, bureau of reclamation and modified stress path methods were used to determine shear strength parameters at failure. Several significant conclusions developed by the authors are as follows: (1) the values for effective angle of internal friction and effective cohesion were substantially independent of asphalt content, (2) straight line MOHR envelopes of failure were observed for all treated stones, (3) bituminous admixtures did little to improve volume change (deformation due to load) characteristics of the three crushed limestones, (4) with respect to pore water characteristics (pore pressures and suctions due to lateral loading), bituminous treatment notably improved only the bedford stone, and (5) at low lateral pressures bituminous treatments increased stability by limiting axial strain. This would reduce rutting of highway bases. At high lateral pressures treated stone was less stable than untreated stone.