9 resultados para Sediment control
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The objective of this study was to develop guidelines for use of the Iowa Vanes technique for sediment control in bridge waterways. Iowa Vanes are small flow-training structures (foils) designed to modify the near-bed flow pattern and redistribute flow and sediment transport within the channel cross section. The structures are installed at an angleof attack of 15 - 25' with the flow, and their initial height is 0.2 - 0.5 times water depth at design stage. The vanes function by generating secondary circulation in the flow. The circulation alters magnitude and direction of the bed shear stress and causes a reduction in velocity and sediment transport in the vane controlled area. As a result, the river bed aggrades in the vane controlled area and degrades outside. This report summarizes the basic theory, describes results of laboratory and field tests, and presents the resulting design procedure. Design graphs have been developed based on the theory. The graphs are entered with basic flow variables and desired bed topography. The output is vane layout and design. The procedure is illustrated with two numerical examples prepared with data that are typical for many rivers in Iowa and the midwest. The report also discusses vane material. In most applications, the vane height will be between 30% and 50% of bankfull flow depth and the vane length will be two to three times vane height. The vanes will be placed in arrays along the bank of the river. Each array will contain two or more vanes. The vanes in an array will be spaced laterally a distance of two to three times vane height. The streamwise spacing between the arrays will be 15 to 30 times vane height, and the vane-to-bank distance will be three to four times vane height. The study also show that the first (most upstream) array in the vane system must be located a distance of at least three array spacings upstream from the bridge, and there must be at least three arrays in the system for it to be effective at and downstream from the third array.
Resumo:
According to the 1972 Clean Water Act, the Environmental Protection Agency (EPA) established a set of regulations for the National Pollutant Discharge Elimination System (NPDES). The purpose of these regulations is to reduce pollution of the nation’s waterways. In addition to other pollutants, the NPDES regulates stormwater discharges associated with industrial activities, municipal storm sewer systems, and construction sites. Phase II of the NPDES stormwater regulations, which went into effect in Iowa in 2003, applies to construction activities that disturb more than one acre of ground. The regulations also require certain communities with Municipal Separate Storm Sewer Systems (MS4) to perform education, inspection, and regulation activities to reduce stormwater pollution within their communities. Iowa does not currently have a resource to provide guidance on the stormwater regulations to contractors, designers, engineers, and municipal staff. The Statewide Urban Design and Specifications (SUDAS) manuals are widely accepted as the statewide standard for public improvements. The SUDAS Design manual currently contains a brief chapter (Chapter 7) on erosion and sediment control; however, it is outdated, and Phase II of the NPDES stormwater regulations is not discussed. In response to the need for guidance, this chapter was completely rewritten. It now escribes the need for erosion and sediment control and explains the NPDES stormwater regulations. It provides information for the development and completion of Stormwater Pollution Prevention Plans (SWPPPs) that comply with the stormwater regulations, as well as the proper design and implementation of 28 different erosion and sediment control practices. In addition to the design chapter, this project also updated a section in the SUDAS Specifications manual (Section 9040), which describes the proper materials and methods of construction for the erosion and sediment control practices.
Resumo:
The Summit Lake Watershed Improvement Project is a watershed-based sediment control project designed to greatly reduce to nearly eliminate sedimentation of an existing lake that is being renovated for use as a water source in southern Iowa. Summit Lake is owned by the City of Creston and was once a water source lake until around 1984. The watershed improvements will include lakeshore stabilization and erosion control practices as a precursor for related improvements to the lake and overall 4,900-acre watershed. Best practices included in this phase are the implementation of riprap, a rain garden, grade stabilization structures, grassed waterways, terraces, basins, water use and access ordinances, education and outreach, water monitoring, and other stream bank improvements. These improvements, along with leveraged work to be done by strategic partners, will enable the lake to be used for local and regional water supplies by sustaining the lake for many years to come. Without the lake rehabilitation, the lake will likely be filled with sedimentation to the point that it will have no recreational value. Key partners are the City of Creston, IDNR, Southern Iowa Rural Water Association, Union County, the Union County NRCS office, Southwestern Community College, and the Summit Lake Association, which is a non-profit group of landowners working to protect the lake. The project will address WIRB targets: a) streambank stabilization, b) livestock runoff, c) agricultural runoff and drainage, d) stormwater runoff, and e) a section of inadequately sewered community.
Resumo:
The primary goal of the Hewitt Creek watershed council is to have Hewitt-Hickory Creek removed from the Iowa impaired waters (303d) list. Hewitt Creek watershed, a livestock dense 23,005 acre sub-watershed of the Maquoketa River Basin, is 91.2% agricultural and 7.5% woodland. Since 2005, sixty-seven percent of 84 watershed farm operations participated in an organized watershed improvement effort using a performance based watershed management approach, reducing annual sediment delivery to the stream by 4,000 tons. Watershed residents realize that water quality improvement efforts require a long-term commitment in order to meet their watershed improvement goals and seek funding for an additional five years to continue their successful watershed improvement project. Cooperators will be provided incentives for improved environmental performance, along with incentives and technical support to address feedlot runoff issues and sub-surface nitrate-nitrogen loss. The Phosphorus Index, Soil Conditioning Index and cornstalk nitrate test will be used by producers as measures of performance to refine nutrient and soil loss management and to determine effective alternatives to reduce nutrient and sediment delivery. Twenty-five livestock operations will improve feedlot runoff control systems and five sub-surface bioreactors will be installed to reduce nitrate delivery from priority tile-drained fields. The Hewitt Creek council will seek additional cost-share funding for high-cost feedlot runoff control structures, sediment control basins and stream bank stabilization projects.
Resumo:
Part of a phased approach, an intensive information and education program, construction of erosion control practices, and sediment control on construction sites is proposed. These proposed practices will manage sediment runoff and nutrient runoff on agricultural and urban areas. Sediment control “structures” such as waterways, wetlands, modified terraces, grade stabilization structures, sediment basins, and rain gardens is proposed and will be combined with nutrient and pesticide management and reduced tillage to reduce non-point source pollution. A reduction of 15% of the sediment and phosphorus delivered to a water body from priority areas will be looked at as a success in this short-term project focused primarily at education within the project area which is also, for the most part, the top 25% sediment load producing sub-watersheds. In addition, four urban areas have been identified as part of this project as needing immediate assistance. A combination of urban and agricultural conservation practices, shoreline revegetation, and education of landowners will be used to achieve these results on both the urban and the agricultural arena.
Resumo:
Bear Creek is an impaired warm water fishery designated as class B(LR) by the Iowa DNR and is on 303 impaired waters list for fish kills and ammonia. Bear Creek is located in eastern Delaware County. This project is designed to improve the water quality of Bear Creek by educating the landowners, operators and watershed community about the importance of this water resource. The goal of the Bear Creek Watershed Project is to improve the water quality of Bear Creek by reducing the amounts of ammoniated manure discharge, fecal coliform bacteria, sediment, nitrogen, and phosphorous. The Bear Creek Watershed Project has been a watershed project since July 2004, first as a Demo project FY 2004-2005 and then full time WSPF/319 project FY06-09. Fish kills have not occurred in 2008-2009. Sediment delivery has decreased in the Bear Creek Watershed by 5,328 tons per year. The objectives of this watershed project will be to improve Livestock Waste Storage, to improve Livestock Waste Usage, to decrease Sediment Losses, and to improve Education & Area Outreach. This project will install 2 manure storage structures (EQIP/project funded), 19 ac of CRP waterways, 12 ac of project waterways, 17 ac of CRP filter strips along stream, 12 water and sediment control basins, 18,000 ft of terraces, 350 ac of new notill planting, and 3,700 ft of streambank protection.
Resumo:
Sand Creek is the most significant recreational fishery in Delaware County because of its location to Manchester and Lake Delhi. It is a feeder stream for game fish to the main stem of the Maquoketa River which is limited by the dams at Manchester and Lake Delhi. Sand Creek encompasses 16,045 acres and is dominated by row crop agriculture. It is being impacted by sediment, nutrients and E coli bacteria. Sand Creek will be a good example for habitat impaired watershed. The purpose of this project is to decrease the amount of sediment and nutrients reaching Sand Creek and to increase the habitat in Sand Creek to make it a better spawning and growing area for the fish and the food chain for the fish. The objectives of this project are to reduce sediment delivery by 40%, to improve in-stream habitat on 40% of identified critical areas and implement an information/education program. The project will install 3,800 acres of new no-till planting, 6 water and sediment control basins, 4,000 feet of terraces, 20,000 feet of improved or new waterways, 3,200 feet of streambank/ habitat enhancement, 4,500 feet of livestock exclusion fencing and 6 acres of wetlands.
Resumo:
This project would target Norfolk Creek Subwatershed for land treatment practices. The Norfolk Creek Subwatershed is 14,035 acres located southwest of Waukon. The landscape is characterized by rugged karst topography and is marked with hundreds of sinkholes, providing direct drainage into the water table, affecting wells, springs, and community water sources. The surface groundwater runoff from this karst landscape eventually flows into the Yellow River. The potential point and non-point pollution sources are complicated and expensive to resolve. Extensive water quality monitoring has been completed on Norfolk Creek and has tested high in many parameters. We hope that with the upland treatment included in this grant request, terraces, grade stabilization structures, sediment control basins, and livestock manure management systems, these will improve. Continued water quality sampling will monitor this. This application has been reviewed and approved by the Allamakee County Soil and Water Conservation District Commissioners.
Resumo:
This study was conducted for the purpose of evaluating a new concept for a bank-protection structure: The Iowa Vane . The underlying idea involves countering the torque exerted on the primary flow by its curvature and vertical velocity gradient, thereby eliminating or significantly reducing the secondary flow and thus reducing the undermining of the outer banks and the high-velocity attack on it. The new structure consists of an array of short, vertical, submerged vanes installed with a certain orientation on the channel bed. A relatively small number of vanes can produce bend flows which are practically uniform across the channel. The height of the vanes is less than half the water depth, and their angle with the flow direction is of the order of l0 degrees. In this study, design relations have been established. The relations, and the vanes' overall performance, have been tested in a laboratory model under different flow and sediment conditions. The results are used for the design of an Iowa-Vane bank protection structure for a section of East Nishnabotna River along U.S. Highway 34 at Red Oak, Iowa.