2 resultados para STATISTICAL MODELS
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This report documents an extensive field program carried out to identify the relationships between soil engineering properties, as measured by various in situ devices, and the results of machine compaction monitoring using prototype compaction monitoring technology developed by Caterpillar Inc. Primary research tasks for this study include the following: (1) experimental testing and statistical analyses to evaluate machine power in terms of the engineering properties of the compacted soil (e.g., density, strength, stiffness) and (2) recommendations for using the compaction monitoring technology in practice. The compaction monitoring technology includes sensors that monitor the power consumption used to move the compaction machine, an on-board computer and display screen, and a GPS system to map the spatial location of the machine. In situ soil density, strength, and stiffness data characterized the soil at various stages of compaction. For each test strip or test area, in situ soil properties were compared directly to machine power values to establish statistical relationships. Statistical models were developed to predict soil density, strength, and stiffness from the machine power values. Field data for multiple test strips were evaluated. The R2 correlation coefficient was generally used to assess the quality of the regressions. Strong correlations were observed between averaged machine power and field measurement data. The relationships are based on the compaction model derived from laboratory data. Correlation coefficients (R2) were consistently higher for thicker lifts than for thin lifts, indicating that the depth influencing machine power response exceeds the representative lift thickness encountered under field conditions. Caterpillar Inc. compaction monitoring technology also identified localized areas of an earthwork project with weak or poorly compacted soil. The soil properties at these locations were verified using in situ test devices. This report also documents the steps required to implement the compaction monitoring technology evaluated.
Resumo:
Building on previous research, the goal of this project was to identify significant influencing factors for the Iowa Department of Transportation (DOT) to consider in future updates of its Instructional Memorandum (I.M.) 3.213, which provides guidelines for determining the need for traffic barriers (guardrail and bridge rail) at secondary roadway bridges—specifically, factors that might be significant for the bridge rail rating system component of I.M. 3.213. A literature review was conducted of policies and guidelines in other states and, specifically, of studies related to traffic barrier safety countermeasures at bridges in several states. In addition, a safety impact study was conducted to evaluate possible non-driver-related behavior characteristics of crashes on secondary road structures in Iowa using road data, structure data, and crash data from 2004 to 2013. Statistical models (negative binomial regression) were used to determine which factors were significant in terms of crash volume and crash severity. The study found that crashes are somewhat more frequent on or at bridges possessing certain characteristics—traffic volume greater than 400 vehicles per day (vpd) (paved) or greater than 50 vpd (unpaved), bridge length greater than 150 ft (paved) or greater than 35 ft (unpaved), bridge width narrower than its approach (paved) or narrower than 20 ft (unpaved), and bridges older than 25 years (both paved and unpaved). No specific roadway or bridge characteristic was found to contribute to more serious crashes. The study also confirmed previous research findings that crashes with bridges on secondary roads are rare, low-severity events. Although the findings of the study support the need for appropriate use of bridge rails, it concludes that prescriptive guidelines for bridge rail use on secondary roads may not be necessary, given the limited crash expectancy and lack of differences in crash expectancy among the various combinations of explanatory characteristics.