5 resultados para SLAB
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Precast prestressed concrete panels have been used in bridge deck construction in Iowa and many other states. To investigate the performance of these panels at abutment or pier diaphragm locations for bridges with various skew angles, a research program involving both analytical and experimental aspects, is being conducted. This interim report presents the status of the research with respect to four tasks. Task 1 which involves a literature review and two surveys is essentially complete. Task 2 which involved field investigations of three Iowa bridges containing precast panel subdecks has been completed. Based on the findings of these investigations, future inspections are recommended to evaluate potential panel deterioration due to possible corrosion of the prestressed strands. Task 3 is the experimental program which has been established to monitor the behavior of five configurations of full scale composite deck slabs. Three dimensional test and instrumentation frameworks have been constructed to load and monitor the slab specimens. The first slab configuration representing an interior panel condition is being tested and preliminary results are presented for one of these tests in this interim report. Task 4 involves the analytical investigation of the experimental specimens. Finite element methods are being applied to analytically predict the behavior of the test specimens. The first test configuration of the interior panel condition has been analyzed for the same loads used in the laboratory, and the results are presented herein. Very good correlation between the analytical and experimental results has occurred.
Resumo:
The spacing of adjacent wheel lines of dual-lane loads induces different lateral live load distributions on bridges, which cannot be determined using the current American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) or Load Factor Design (LFD) equations for vehicles with standard axle configurations. Current Iowa law requires dual-lane loads to meet a five-foot requirement, the adequacy of which needs to be verified. To improve the state policy and AASHTO code specifications, it is necessary to understand the actual effects of wheel-line spacing on lateral load distribution. The main objective of this research was to investigate the impact of the wheel-line spacing of dual-lane loads on the lateral load distribution on bridges. To achieve this objective, a numerical evaluation using two-dimensional linear elastic finite element (FE) models was performed. For simulation purposes, 20 prestressed-concrete bridges, 20 steel bridges, and 20 slab bridges were randomly sampled from the Iowa bridge database. Based on the FE results, the load distribution factors (LDFs) of the concrete and steel bridges and the equivalent lengths of the slab bridges were derived. To investigate the variations of LDFs, a total of 22 types of single-axle four-wheel-line dual-lane loads were taken into account with configurations consisting of combinations of various interior and exterior wheel-line spacing. The corresponding moment and shear LDFs and equivalent widths were also derived using the AASHTO equations and the adequacy of the Iowa DOT five-foot requirement was evaluated. Finally, the axle weight limits per lane for different dual-lane load types were further calculated and recommended to complement the current Iowa Department of Transportation (DOT) policy and AASHTO code specifications.
Resumo:
The dynamic interaction of vehicles and bridges results in live loads being induced into bridges that are greater than the vehicle’s static weight. To limit this dynamic effect, the Iowa Department of Transportation (DOT) currently requires that permitted trucks slow to five miles per hour and span the roadway centerline when crossing bridges. However, this practice has other negative consequences such as the potential for crashes, impracticality for bridges with high traffic volumes, and higher fuel consumption. The main objective of this work was to provide information and guidance on the allowable speeds for permitted vehicles and loads on bridges .A field test program was implemented on five bridges (i.e., two steel girder bridges, two pre-stressed concrete girder bridges, and one concrete slab bridge) to investigate the dynamic response of bridges due to vehicle loadings. The important factors taken into account during the field tests included vehicle speed, entrance conditions, vehicle characteristics (i.e., empty dump truck, full dump truck, and semi-truck), and bridge geometric characteristics (i.e., long span and short span). Three entrance conditions were used: As-is and also Level 1 and Level 2, which simulated rough entrance conditions with a fabricated ramp placed 10 feet from the joint between the bridge end and approach slab and directly next to the joint, respectively. The researchers analyzed and utilized the field data to derive the dynamic impact factors (DIFs) for all gauges installed on each bridge under the different loading scenarios.
Resumo:
This study had three objectives: (1) to develop a comprehensive truck simulation that executes rapidly, has a modular program construction to allow variation of vehicle characteristics, and is able to realistically predict vehicle motion and the tire-road surface interaction forces; (2) to develop a model of doweled portland cement concrete pavement that can be used to determine slab deflection and stress at predetermined nodes, and that allows for the variation of traditional thickness design factors; and (3) to implement these two models on a work station with suitable menu driven modules so that both existing and proposed pavements can be evaluated with respect to design life, given specific characteristics of the heavy vehicles that will be using the facility. This report summarizes the work that has been performed during the first year of the study. Briefly, the following has been accomplished: A two dimensional model of a typical 3-S2 tractor-trailer combination was created. A finite element structural analysis program, ANSYS, was used to model the pavement. Computer runs have been performed varying the parameters defining both vehicle and road elements. The resulting time specific displacements for each node are plotted, and the displacement basin is generated for defined vehicles. Relative damage to the pavement can then be estimated. A damage function resulting from load replications must be assumed that will be reflected by further pavement deterioration. Comparison with actual damage on Interstate 80 will eventually allow verification of these procedures.
Resumo:
Portland cement concrete (PCC) pavement undergoes repeated environmental load-related deflection resulting from temperature and moisture variations across the pavement depth. This phenomenon, referred to as PCC pavement curling and warping, has been known and studied since the mid-1920s. Slab curvature can be further magnified under repeated traffic loads and may ultimately lead to fatigue failures, including top-down and bottom-up transverse, longitudinal, and corner cracking. It is therefore important to measure the “true” degree of curling and warping in PCC pavements, not only for quality control (QC) and quality assurance (QA) purposes, but also to achieve a better understanding of its relationship to long-term pavement performance. In order to better understand the curling and warping behavior of PCC pavements in Iowa and provide recommendations to mitigate curling and warping deflections, field investigations were performed at six existing sites during the late fall of 2015. These sites included PCC pavements with various ages, slab shapes, mix design aspects, and environmental conditions during construction. A stationary light detection and ranging (LiDAR) device was used to scan the slab surfaces. The degree of curling and warping along the longitudinal, transverse, and diagonal directions was calculated for the selected slabs based on the point clouds acquired using LiDAR. The results and findings are correlated to variations in pavement performance, mix design, pavement design, and construction details at each site. Recommendations regarding how to minimize curling and warping are provided based on a literature review and this field study. Some examples of using point cloud data to build three-dimensional (3D) models of the overall curvature of the slab shape are presented to show the feasibility of using this 3D analysis method for curling and warping analysis.