16 resultados para Route allocation
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Interstate Route Flow represented on this map are annual average daily traffic volumes between major traffic.
Resumo:
Interstate Route Flow represented on this map are annual average daily traffic volumes between major traffic.
Resumo:
Interstate Route Flow represented on this map are annual average daily traffic volumes between major traffic.
Resumo:
Interstate Route Flow represented on this map are annual average daily traffic volumes between major traffic.
Resumo:
Interstate Route Flow represented on this map are annual average daily traffic volumes between major traffic.
Resumo:
Interstate Route Flow represented on this map are annual average daily traffic volumes between major traffic.
Resumo:
Interstate Route Flow represented on this map are annual average daily traffic volumes between major traffic.
Resumo:
Interstate Route Flow represented on this map are annual average daily traffic volumes between major traffic.
Resumo:
Interstate Route Flow represented on this map are annual average daily traffic volumes between major traffic.
Resumo:
Overview of the Passenger Service Connects Iowa City, Quad Cities and Chicago, 219.5 miles Twice‐daily service each way, 4 hours and 15 minutes travel time 246,800 passengers first year (676 per day) Project construction cost $310 million (80% federal, 14.5% Illinois, 5.4% Iowa) On‐time performance 90% or better (trains arrive within 10 minutes of schedule) Competitive passenger rail service operator selection Iowa’s annual share of operating cost support averages $3 million
Resumo:
This business plan describes the methods by which the Iowa Department of Transportation (DOT) will partner with Iowa counties and cities to fund Iowa’s share of the operating and maintenance cost for the Chicago- Iowa City passenger-rail service, an average of $3 million per year.
Resumo:
There were few guides for travelers crossing Iowa in 1838 when it was organzied as a teritory, and traveler often becaome lost or wandered for out of their way. The 1838 Territorial Government authorized the first state roads and the federal government appropriated money to expedite the movement of soldiers. The Territorial governement ued the federal money for layin gout a road from Dubuque to Keokuk vis Iowa City and this was the beginning of what was to becaome a 112,000 mile system of roads and streets in Iowa. The original roads followed the high ground of the state and were known as ride roads; but as the state was settled, roads befan to follow section line to accomodate landowners.
Resumo:
The development of new rail systems in the first part of the 21st century is the result of a wide range of trends that are making it increasingly difficult to maintain regional mobility using the two dominant intercity travel modes, auto and air. These trends include the changing character of the economic structure of industry. The character of the North American industrial structure is moving rapidly from a manufacturing base to a service based economy. This is increasing the need for business travel while the increase in disposable income due to higher salaries has promoted increased social and tourist travel. Another trend is the change in the regulatory environment. The trend towards deregulation has dramatically reduced the willingness of the airlines to operate from smaller airports and the level of service has fallen due to the creation of hub and spoke systems. While new air technology such as regional jets may mitigate this trend to some degree in medium-size airports, smaller airports will continue to lose out. Finally, increasing environmental concerns have reduced the ability of the automobile to meet intercity travel needs because of increased suburban congestion and limited highway capacity in big cities. Against this background the rail mode offers new options due to first, the existing rail rights-of-way offering direct access into major cities that, in most cases, have significant capacity available and, second, a revolution in vehicle technology that makes new rail rolling stock faster and less expensive to purchase and operate. This study is designed to evaluate the potential for rail service making an important contribution to maintaining regional mobility over the next 30 to 50 years in Iowa. The study evaluates the potential for rail service on three key routes across Iowa and assesses the impact of new train technology in reducing costs and improving rail service. The study also considers the potential for developing the system on an incremental basis. The service analysis and recommendations do not involve current Amtrak intercity service. That service is presumed to continue on its current route and schedule. The study builds from data and analyses that have been generated for the Midwest Rail Initiative (MWRI) Study. For example, the zone system and operating and capital unit cost assumptions are derived from the MWRI study. The MWRI represents a cooperative effort between nine Midwest states, Amtrak and the Federal Railroad Administration (FRA) contracting with Transportation Economics & Management Systems, Inc. to evaluate the potential for a regional rail system. The 1 The map represents the system including the decision on the Iowa route derived from the current study. Iowa Rail Route Alternatives Analysis TEMS 1-2 system is to offer modern, frequent, higher speed train service to the region, with Chicago as the connecting hub. Exhibit 1-1 illustrates the size of the system, and how the Iowa route fits in to the whole.
Resumo:
The programs included in this Discussion Paper no. 17 are Distance, Unravel, Retrench and Alloc 6B that deal with location-allocation analyses first published in 1973 by the Department of Geography, The University of Iowa.
Resumo:
Highway maintenance engineers and administrators are often confronted with a number of problems related to highway maintenance work programs. One of these problems is concerned with determining the optimum number and locations of highway maintenance garages in a given area. Serious decline in highway revenues and a high inflation rate have made it necessary to examine existing maintenance practices and to allocate reduced financial resources more effectively and efficiently. Searching for and providing of reasonable solutions to these problems is the focus of this research project. The methodology used is to identify and modify for use (if necessary) those models which have already been developed. Models which could give optimum number and locations of highway maintenance garages were found to be too theoretical and/or practically infeasible. Consequently, research focus was shifted from these models to other models that could compare alternatives and select the best among these alternatives. Three such models -- the Alabama model, California model, and Louisiana model, were identified and studied.