7 resultados para Roof deconstruction

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This document is intended to lay the foundation for resource reduction strategies in new construction, renovation and demolition. If you have an innovative idea or information that you believe should be included in future updates of this manual please email Shelly Codner at scodner@region12cog.org or Jan Loyson at Jan.Loyson@Iowalifechanging.com. Throughout this manual, we use the term “waste reduction” to define waste management initiatives that will result in less waste going to the landfill. In accordance with the waste management hierarchy these practices include reducing (waste prevention), reusing (deconstruction and salvage), recycling and renewing (making old things new again) - in that order. This manual will explain what these practices are and how to incorporate them into your projects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The average Iowa family spends more than half of its annual household energy bill on heating and cooling. That’s a significant number, but you can dramatically reduce these costs—up to 20 percent, according to ENERGY STAR®—by making some simple energy-saving weatherization and insulation improvements to your home. In addition—with a little attention to proper ventilation—you can protect your home from moisture damage year-round, reduce problems caused by ice dams on the roof during the winter and significantly cut summer cooling costs. As a bonus, these projects can extend the life of your home and may increase the resale value of your property. If you like to fix things around the house, you can handle many of the projects suggested in this book and make the most of your energy-improvement budget. However, don’t hesitate to call a professional for help if you’d rather not do the work yourself; the dollars gained through energy savings in upcoming years will be worth the expense.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The twenty-first century Iowa State Capitol contains state-of-the-art fire protection. Sprinklers and smoke detectors are located in every room and all public hallways are equipped with nearby hydrants. The Des Moines Fire Department is able to fight fires at nearly any height. However, on Monday morning, January 4, 1904, the circumstances were much different. By the beginning of 1904, the Capitol Improvement Commission had been working in the Capitol for about two years. The commissioners were in charge of decorating the public areas of the building, installing the artwork in the public areas, installing a new copper roof, re-gilding the dome, replacing windows, and connecting electrical lines throughout. Electrician H. Frazer had been working that morning in Committee Room Number Five behind the House Chamber, drilling into the walls to run electrical wires and using a candle to light his way. The investigating committee determined that Frazer had left his work area and had neglected to extinguish his candle. The initial fire alarm sounded at approximately 10 a.m. Many citizen volunteers came to help the fire department. Capitol employees and state officials also assisted in fighting the fire, including Governor Albert Cummins. The fire was finally brought under control around 6 p.m., although some newspaper accounts at the time reported that the fire continued smoldering for several days. Crampton Linley was the engineer working with the Capitol Improvement Commission. He was in the building at the time of the fire and was credited with saving the building. Linley crawled through attic areas to close doors separating wings of the Capitol, an action which smothered the flames and brought the fire under control. Sadly, Linley did not live long enough to be recognized for his heroism. The day after the fire, while examining the damage, Linley fell through the ceiling of the House Chamber and died instantly from severe head injuries. The flames had burned through the ceiling and caused much of it to collapse to the floor below, while the lower areas of the building had been damaged by smoke and water. Elmer Garnsey was the artist hired by the Capitol Improvement Commission to decorate the public areas of the building. Therefore, he seemed the logical candidate to be given the additional responsibility of redecorating the areas damaged by the fire. Garnsey had a very different vision for the decoration, which is why the House Chamber, the old Supreme Court Room, and the old Agriculture offices directly below the House Chamber have a design that is very different from the areas of the building untouched by the fire.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The DMACC Lake Watershed Improvement project will focus on water quality and quantity as well as channel and lake restoration. Roadway, parking lot, and roof drainage from the west and northwest portions of the campus add significant amounts of pollutants and silt to the lake. Severe channel erosion exists along the northern creek channel with exposed cut banks ranging from 2-10 feet in height devoid of vegetation. Heavy lake sedimentation and algae blooms are a result of accumulated sediment being conveyed to the lake. Most sections of the north channel have grades of between 0.5% and 1%. This channel receives large scouring flow velocities. There are no natural riffle or pool systems. There are five areas where these riffle and pool systems may need to be created in order to slow overall channel velocities. This will create a series of rock riffles and a still pool that will mimic the conditions that natural channels tend to create, protecting the channel from undercutting. Multiple practices will need to be implemented to address the pollutant, silt, and channel erosion. Improvements will be specifically tailored to address problems observed within the north channel, on-site drainage from the west and northwest, as well as off-site drainage to the north of the campus and east of Ankeny Blvd (Hwy 69). The result will be improved quality and quantity of site drainage and a channel with a more natural appearance and reduced scour velocities. Sections of the north channel will require grading to establish slopes that can support deep rooted vegetation and to improve maintenance access. Areas with eroded banks will require slope pull back and may also require toe armor protection to stabilize. A constructed wetland will collect and treat runoff from the west on site parking lot, before being discharged into the lake. This project will create educational opportunities to both students and the general public as well as interested parties outside of the local area for how an existing system can be retro fitted for improved watershed quality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of diethylenetriaminpenta(methylenephosphonic acid) (DTPMP), a phosphonate inhibitor, on the growth of delayed ettringite have been evaluated using concrete in highway US 20 near Williams, Iowa, and the cores of six highways subject to moderate (built in 1992) or minor (built in 1997) deterioration. Application of 0.01 and 0.1 vol. % DTPMP to cores was made on a weekly or monthly basis for one year under controlled laboratory-based freeze-thaw and wet-dry conditions over a temperature range of -15 degrees to 58 degrees C to mimic extremes in Iowa roadway conditions. The same concentrations of phosphonate were also applied to cores left outside (roof of Science I at Iowa State University) over the same period of time. Nineteen applications of 0.1 vol. % DTPMP with added deicing salt solution (about 23 weight % NACL) were made to US 20 during the winters of 2003 and 2004. In untreated samples, air voids, pores, and occasional cracks are lined with acicular ettringite crystals (up to 50 micrometers in length) whereas air voids, pores, and cracks in concrete from the westbound lane of US 20 are devoid of ettringite up to a depth of about 0.5 mm from the surface of the concrete. Ettringite is also absent in zones up to 6 mm from the surface of concrete slabs placed on the roof of Science I and cores subject to laboratory-based freeze-thaw experiments. In these zones, the relatively high concentration of DTPMP caused it to behave as a chelator. Stunted ettringite crystals 5 to 25 micrometers in length, occasionally coated with porlandite, form on the margins of these zones indicating that in these areas DTPMP behaved as an inhibitor due to a reduction in the concentration of phosphonate. Analyses of mixes of ettringite and DTPMP using electrospray mass spectrometry suggests that the stunting of ettringite growth is caused by the adsorption of a Ca2+ ion and a water molecule to deprotonated DTPMP on the surface of the {0001} face of ettringite. It is anticipated that by using a DTPMP concentration of between 0.001 and 0.01 vol. % for the extended life of a highway (i.e. >20 years), deterioration caused by the expansive growth of ettringite will be markedly reduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Dry Run Creek Watershed received a biological impairment in 2002 after sampling conducted by the Department of Natural Resources revealed a lack in the diversity and abundance of aquatic life along a 2.8 mile reach of stream along the Southwest Branch. Among the primary stressors identified were hydrologic change, increased stormsewer inputs, lack of available habitat, and sedimentation. Goals put forth by the Watershed Management Plan and the preliminary Total Maximum Daily Load (TMDL) study center around the reduction in storm sewer inputs. The goal set forth by the TMDL is the reduction of connected impervious surface (CIS) to 10% in each of the creek’s subwatersheds as a surrogate for other stressors. Grant funding is being sought for the construction of two bioretention cells and a green roof to treat the first flush of runoff from a new 400 unit student housing structure and connected parking surfaces totaling 5.16 acres. In addition, a monitoring program will continue to be coordinated through a partnership with the Department of Natural Resources IOWATER program and locally led volunteer efforts which will allow us to track the progress of the watershed. Funding for administration, outreach, and assessment will be provided through existing 319 grants. Implementation of these practices will occur in phases over the course of a two year period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The focus of this project is "Indian Creek", a tributary to Cedar Creek which eventually empties into the Lower Skunk River. Indian Creek suffers from deteriorated water quality resulting from high volumes of urban stormwater runoff resulting in streambank erosion, combined sewer overflows and chemical and floatable litter pollution from roadways. The "Creative Solution for Indian Creek Water Quality" project will work with a local commercial business to create a model urban project The project will reduce the volume of urban stormwater by 930,000 gallons annually entering Indian Creek as well as reduce the volume of discharge water by 500,000 gallons annually. The local business will develop a system to divert stormwater from l acre of their roof as well as coolant discharge water from their factory into an existing retention pond. In addition, the project will reduce demand on the municipal water supply by 500,000 gallons annually by harvesting water from the retention pond for cooling operations.