9 resultados para Rolling Horizon
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Surface characteristics represent a critical issue facing pavement owners and the concrete paving industry. The traveling public has come to expect smoother, quieter, and better drained pavements, all without compromising safety. The overall surface characteristics issues is extremely complex since all pavement surface characteristics properties, including texture, noise, friction, splash/spray, rolling resistance, reflectivity/illuminance, and smoothness, are complexly related. The following needs and gaps related to achieving desired pavement surface characteristics need to be addressed: determined how changes in one surface characteristic affect, either beneficially or detrimentally, other characteristics of the pavement, determine the long-term surface and acoustic durability of different textures, and develop, evaluate, and standardize new data collection and analysis tools. It is clear that an overall strategic and coordinated research approach to the problem must be developed and pursued to address these needs and gaps.
Resumo:
This report is submitted as required per Code of Iowa section 327J.3(5), "The director shall report annually to the general assembly concerning the development and operation of the midwest regional rail system and the state's passenger rail service." The Midwest Regional Rail Initiative (MWRRI) is a nine-state effort to develop an implementation plan for a 3,000-mile, high-speed rail system hubbed in Chicago. Studies done since 1996 have concluded that such a regional system, including a line from Chicago to Omaha through Davenport, Iowa City and Des Moines, is viable. Most of the system would be upgraded to allow 110 mile-per-hour service. Some low volume lines, including the Iowa portions, would be upgraded for 79 mile-per-hour service. The nine-state coalition released an updated 2004 executive report for the system. As reported, the updated cost estimate for the Chicago to Omaha corridor, which includes a branch to Quincy, Ill., is $638 million for infrastructure and $167 million for rolling stock. These costs are higher than first estimated in 1998 and are given in 2002 dollars, (not adjusted for the cost of inflation). Operating subsidies would be required during an extended start-up phase. The allocation of these subsidy costs among the various states has not been determined, and is still a subject for analysis and negotiation. Little progress on implementation is expected unless a federal funding package is passed for passenger rail initiatives. Continued congressional discussion on policy directions relative to Amtrak clouds the issue of passenger rail funding. However, Congress is expected to address passenger rail issues and funding in 2007. Participation of the Iowa Department of Transportation in the MWRRI is authorized under Iowa Code section 327J.3.
Resumo:
Written by William Rufus Perkins this book is the history of the Trappist Abbey of New Melleray in Dubuque County, Iowa. New Melleray is a Cistercian (Trappist) monastery located in the rolling farmland south of Dubuque
Resumo:
The development of new rail systems in the first part of the 21st century is the result of a wide range of trends that are making it increasingly difficult to maintain regional mobility using the two dominant intercity travel modes, auto and air. These trends include the changing character of the economic structure of industry. The character of the North American industrial structure is moving rapidly from a manufacturing base to a service based economy. This is increasing the need for business travel while the increase in disposable income due to higher salaries has promoted increased social and tourist travel. Another trend is the change in the regulatory environment. The trend towards deregulation has dramatically reduced the willingness of the airlines to operate from smaller airports and the level of service has fallen due to the creation of hub and spoke systems. While new air technology such as regional jets may mitigate this trend to some degree in medium-size airports, smaller airports will continue to lose out. Finally, increasing environmental concerns have reduced the ability of the automobile to meet intercity travel needs because of increased suburban congestion and limited highway capacity in big cities. Against this background the rail mode offers new options due to first, the existing rail rights-of-way offering direct access into major cities that, in most cases, have significant capacity available and, second, a revolution in vehicle technology that makes new rail rolling stock faster and less expensive to purchase and operate. This study is designed to evaluate the potential for rail service making an important contribution to maintaining regional mobility over the next 30 to 50 years in Iowa. The study evaluates the potential for rail service on three key routes across Iowa and assesses the impact of new train technology in reducing costs and improving rail service. The study also considers the potential for developing the system on an incremental basis. The service analysis and recommendations do not involve current Amtrak intercity service. That service is presumed to continue on its current route and schedule. The study builds from data and analyses that have been generated for the Midwest Rail Initiative (MWRI) Study. For example, the zone system and operating and capital unit cost assumptions are derived from the MWRI study. The MWRI represents a cooperative effort between nine Midwest states, Amtrak and the Federal Railroad Administration (FRA) contracting with Transportation Economics & Management Systems, Inc. to evaluate the potential for a regional rail system. The 1 The map represents the system including the decision on the Iowa route derived from the current study. Iowa Rail Route Alternatives Analysis TEMS 1-2 system is to offer modern, frequent, higher speed train service to the region, with Chicago as the connecting hub. Exhibit 1-1 illustrates the size of the system, and how the Iowa route fits in to the whole.
Resumo:
Browse through this guide and you’ll find the distinct flavor of what is available along each byway. Discover recreational, historic, cultural and scenic attractions using the maps and lists provided in the guide. You’ll find numbered attractions for each byway in or near the town listed. For a comprehensive list of byway features, visit www.iowabyways.org. Friendly local contacts are provided to help you along the way. Iowa Transportation Maps clearly tracking all the Iowa byways with red dotted lines are available at Iowa’s official welcome centers. Traveling Iowa’s byways you will experience small town America, while enjoying diverse landscapes and unique landforms that have been shaped over thousands of years. Iowa’s cultural heritage also plays a major role across all 11 byways, boasting hundreds of historic sites, national landmarks and interpretive centers, each telling Iowa’s stories from the first Native Americans through European immigrants to modern times. Glaciers once covered much of Iowa, shaping the broad flat plains of the prairie. These massive sheets of ice missed the northeast corner of the state, leaving the land along the Driftless Area Byway rugged and hilly with rock outcroppings, springs and cold water trout streams. Rivers coursed their way through the land, carving deep furrows in some places and leaving gently rolling hills in others. In western Iowa, wind has shaped fine sand into the impressive Loess Hills, a rare land form found in only one other place on earth. Iowa’s two national scenic byways and nine state byways offer unique varieties of scenic features, and more for you to see and do. View three states from atop a Mississippi River bluff, stop at a modern art museum and then tour a working farm. Explore a historic mill, visit a national aquarium, take a boat ride in a cave, purchase locally crafted pottery and wares from local artisans or trace the footsteps of Lewis and Clark. Experience the actual wagon ruts of the Mormon Trail, ride your bike 13 stories high, canoe a water trail, star gaze under Iowa’s darkest sky, and marvel at mounds built by prehistoric cultures. Agriculture wraps Iowa’s byways with an abundance of farmland vistas and fills Iowa lands with ever-changing crops and activities for you to “harvest.” You’ll see croplands on the vast flat plains and farmsteads sprinkled across rolling hills reminiscent of a Grant Wood painting. Along the way, you might wander in a corn maze, rest at a bed and breakfast, study farming in museums, discover the Iowa barn quilt collection or visit a working Amish farm. When you are ready to step outside your vehicle, you’ll find much more to do and see. Prairie, forests, rivers and public lands are abundant along Iowa’s byways; providing opportunities for you to stop and play in the outdoors with hiking, biking, kayaking and trout fishing. Classic hometowns with pride for their unique lore and offerings are found all along the byways. They invite you to taste local food, enjoy their architecture, and immerse yourself in the rich history and culture that defines them. Why not plan your next journey off the beaten path? No matter how you choose to make the most of every moment, we know that time spent along Iowa’s byways is sure to grow your love for Iowa’s diverse, beautiful vistas and authentic communities. Happy driving!
Resumo:
The work of the Department of Natural Resources impacts the lives of all Iowans. Iowans deserve a clean environment and quality natural areas for public use and enjoyment. This report reflects the progress made during fiscal year 2013 (FY13) toward our goals and provides information regarding the condition of our state’s natural resources and the effectiveness of our programs. In FY13, we continued to improve collaboration with other executive branch agencies. The DNR and DOT work very closely on the issuance of permits needed for road and bridge constructions, but recently we have also been working together to meet the administrative needs of the agencies. The DNR is working closely with the DOT to adopt an Electronic Records Management System used by the DOT. This system will improve accessibility to public documents and reduce the amount of paper files retained in storage. The DNR also continues to improve collaboration with other agencies, such as the Iowa Economic Development Authority as we work closely with them on business development in the state. The DNR strives to continually improve our customer service and how we can meet Iowan’s needs. As an example, the online reservation system for campground reservations has grown over the past eight years so that now 88% of the camping reservations are made online. The DNR continues to improve our online presence and accessibility. In FY13 the Iowa Legislature approved paying off the State’s bond debt used to construct Honey Creek Resort State Park. By removing this debt, the DNR will be able to focus more on the future of the Resort, rather than the past debt. Finally, in August of 2012, the DNR was faced with a tragic accident, where a seasonal parks employee died after rolling a mower into a lake. This incident has caused us to establish a Safety Program at the DNR and to review all of our departmental safety trainings, programs, and equipment. By focusing on our employee’s safety and well being, it is another way that we can demonstrate that at the DNR, our employees are our greatest asset.
Resumo:
The Iowa Department of Transportation (Iowa DOT) through the Highway Division is responsible for the design, construction and maintenance of roadways that will provide a high level of serviceability to the motorist. First, the motorist expects to be able to get where he wants to go, but now he also demands a minimum level of comfort. In the construction of new roadways, the public is quick to express dissatisfaction with rough pavements. The Highway Division of the Iowa DOT (formerly Iowa State Highway Commission) has a specification which requires a "smooth-riding surface". For over 40 years, new portland cement concrete (pcc) pavement has been checked with a 10-foot rolling straightedge. The contractor is required to grind, saw or mill off all high spots that deviate more than 1/8" from the 10-foot straight line. Unfortunately, there are instances where a roadway that will meet the above criteria does not provide a "smooth-riding surface". The roadway may have monger undulations (swales) that result in an undesirable ride. The objective of this project was to develop a repeatable, reliable time stable, lightweight test unit to measure the riding quality of pcc pavement at normal highway speed the day after construction.
Resumo:
The AASHO specifications for highway bridges require that in designing a bridge, the live load must be multiplied by an impact factor for which a formula is given, dependent only upon the length of the bridge. This formula is a result of August Wohler's tests on fatigue in metals, in which he determined that metals which are subjected to large alternating loads will ultimately fail at lower stresses than those which are subjected only to continuous static loads. It is felt by some investigators that this present impact factor is not realistic, and it is suggested that a consideration of the increased stress due to vibrations caused by vehicles traversing the span would result in a more realistic impact factor than now exists. Since the current highway program requires a large number of bridges to be built, the need for data on dynamic behavior of bridges is apparent. Much excellent material has already been gathered on the subject, but many questions remain unanswered. This work is designed to investigate further a specific corner of that subject, and it is hoped that some useful light may be shed on the subject. Specifically this study hopes to correlate, by experiment on a small scale test bridge, the upper limits of impact utilizing a stationary, oscillating load to represent axle loads moving past a given point. The experiments were performed on a small scale bridge which is located in the basement of the Iowa Engineering Experiment Station. The bridge is a 25 foot simply supported span, 10 feet wide, supported by four beams with a composite concrete slab. It is assumed that the magnitude of the predominant forcing function is the same as the magnitude of the dynamic force produced by a smoothly rolling load, which has a frequency determined by the passage of axles. The frequency of passage of axles is defined as the speed of the vehicle divided by the axle spacing. Factors affecting the response of the bridge to this forcing function are the bridge stiffness and mass, which determine the natural frequency, and the effects of solid damping due to internal structural energy dissipation.
Resumo:
Little Clear Lake is a 162 acre natural lake located in the western part of Pocahontas County. The lake has a 375 acre watershed that is gently rolling with nearly 84% of the watershed in row crop production. The lake is listed on the Iowa DNR’s impaired waters list due to nutrients, siltation and exotic species (purple loosestrife). These impairments have been verified with in-lake monitoring and landowner conversations as well as watershed modeling. The watershed models estimates that the average sheet and rill erosion is 1.74 tons/acre/year and sediment delivery is .12 tons/acre/year with a total of 44 tons/year being delivered to Little Clear Lake. The goal of the Little Clear Lake Watershed Protection Plan is to (1) reduce sediment delivery to Little Clear Lake by 60%, or 26.5 tons annually, by installing best management practices within the watershed. Doing this will control nearly 100% of the of the lake’s drainage area; and (2) initiate an information and education campaign for residents within the Little Clear Lake watershed which will ultimately prepare the residents and landowners for future project implementation. In an effort to control sediment and nutrient loading the Little Clear Lake Watershed Protection Plan has included 3 sediment catch basin sites and 5 grade stabilization structures, which function to stabilize concentrated flow areas.