8 resultados para Roller hearth kiln
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Roller compacted concrete (RCC) is a zero slump portland cement concrete mixture that has been used since the early 1970's in massive concrete structures. Iowa Highway Research Board project HR-300 was established to determine if this type mix could be used to pave roads on the Iowa road system. Manatt's Inc. of Brooklyn, Iowa agreed to pave an 800 ft. x 22 ft. x 10 in. section of RCC pavement in their Ames construction yard. This report discusses the construction of the test slab and interprets test results conducted during and after construction. It was observed that RCC can be placed with conventional asphalt paving equipment. However, there are several problems with RCC paving which must be resolved before RCC can become a viable paving alternative on Iowa's roadway system.
Resumo:
Fine limestone aggregate is abundant in several areas of the state. The aggregate is a by-product from the production of concrete stone. Roller compacted concrete (RCC) is a portland cement concrete mixture that can be produced with small size aggregate. The objective of the research was to evaluate limestone screenings in RCC mixes. Acceptable strength and freeze/thaw durability were obtained with 300 pounds of portland cement and 260 pounds of Class C fly ash. The amount of aggregate passing the number 200 sieve ranged from 4.6 to 11 percent. Field experience in Iowa indicates that the aggregate gradation is more critical to placeability and compactibility than laboratory strength and durability.
Resumo:
This guide provides a clear, concise, and cohesive presentation of cement-bound materials options for 10 specific engineering pavement applications: new concrete pavements, concrete overlays, previous concrete, precast pavements, roller-compacted concrete, cement-treated base, full-depth reclamation with cement, cement-modified soils, recycled concrete aggregates, and repair and restoration. Each application is presented as a method for meeting specific design and construction objectives that today’s pavement practitioners must accomplish. The benefits, considerations, brief description, and summary of materials, design, and construction requirements, as well as a list of sustainable attributes, are provided for every solution. This guide is intended to be short, simple, and easy to understand. It was designed so that the most up-to-date and relevant information is easily extractable. It is not intended to be used as a design guide for any of the applications identified herein. Recommendations for additional information that can provide such details are given at the end of each solution discussion. The intended audience is practitioners, including engineers and managers who face decisions regarding what materials to specify in the pavement systems they design or manage. The audience also includes city and county engineers, along with the A/E firms that often represent them, and state DOT engineers at all levels who are seeking alternatives in this era of changing markets.
Resumo:
In Iowa it is normal procedure to either use partial or full-depth patching to repair deteriorated areas of pavement prior to resurfacing. The Owens/Corning Corporation introduced a repair system to replace the patching process. Their Roadglas repair system was used in this research project on US 30 in Story County. It was installed in 1985 and has been observed annually since that time. There were some construction problems with slippage as the roller crossed the abundant Roadglas binder. It appears the Roadglas system has helped to control reflective cracking in the research areas. Since the time when this project was completed it has been reported that Owens/Corning has discontinued production of the Roadglas system.
Resumo:
Approximately ten million tons of waste bituminous roofing are torn off annually in the United States. This volume is a major factor in the rapid filling of landfills. In 1995, Benton County, Iowa initiated a program to cost effectively recycle torn off waste shingles. Nine hundred tons of waste shingles were ground using a Maxigrind. A magnetic roller on the discharge conveyor removed most of the nails. Five hundred tons of the ground waste shingles were blade mixed into 0.6 km (0.4 mi) of a crushed stone granular surfaced Benton County rural secondary roadway. A magnet attached to the motor grader removed another 1/3 kg (3/4 lb) of nails during the spreading and mixing operation on the 0.6 km (0.4 mi) section of roadway. The bitumen of the waste shingles was very effective in providing a dust free granular surfaced roadway. It remains relatively dust free one year after treatment.
Resumo:
The use of High Performance Concrete (HPC) in Iowa has consisted of achieving slightly higher compressive strengths with an emphasis on reduced permeability. Concrete with reduced permeability has increased durability by slowing moisture and chloride ingress. Achieving reduced permeability has typically been accomplished with combinations of slag and Class C fly ash, or the use of blended cements such as locally available Type IS(20), IS(25) and Type IP(25) in conjunction with Class C fly ash. Fly ash has been used in the majority of concrete placed in Iowa since 1984 and slag has been available in Iowa since 1995. During the economic downturn in 2008, one of the cement plants that produced a Type IS(25) cement was forced to shut down, which reduced the availability of blended cements, typically used on HPC deck overlays. Recently, a source of high reactivity metakaolin has been made available. Metakaolin is produced by heating a pure kaolinite clay to 650 to 700 °C in a rotary kiln (calcining). Metakaolin is a white pozzolan that is used to produce concrete with increased strengths, reduced permeability, reduced efflorescence, and resistance to alkali silica reactivity. The W.R. Grace MK-100 metakaolin will likely be available in dissolvable bags between 25 and 50 pounds. Thus, the mix designs were based on the anticipated bag size range for field use. This research evaluated metakaolin mixes with and without Class C fly ash. Results indicated a seven percent replacement with metakaolin produced concrete with increased strengths and low permeability. When used with Class C fly ash, permeability is reduced to very low rating. Metakaolin may be used to enhance hardened concrete properties for use in high performance concrete (HPC).
Resumo:
The overarching goal of the proposed research was to provide a predictive tool for knickpoint propagation within the HCA (Hungry Canyon Alliance) territory. Knickpoints threaten the stability of bridge structures in Western Iowa. The study involved detailed field investigations over two years in order to monitor the upstream migration of a knickpoint on Mud Creek in Mills County, IA and identify the key mechanisms triggering knickpoint propagation. A state-of-the-art laser level system mounted on a movable truss provided continuous measurements of the knickpoint front for different flow conditions. A pressure transducer found in proximity of the truss provided simultaneous measurements of the flow depth. The laser and pressure transducer measurements led to the identification of the conditions at which the knickpoint migration commences. It was suggested that negative pressures developed by the reverse roller flow near the toe of the knickpoint face triggered undercutting of the knickpoint at this location. The pressure differential between the negative pressure and the atmospheric pressure also draws the impinging jet closer to the knickpoint face producing scour. In addition, the pressure differential may induce suction of sediment from the face. Other contributing factors include slump failure, seepage effects, and local fluvial erosion due to the exerted fluid shear. The prevailing flow conditions and soil information along with the channel cross-sectional geometry and gradient were used as inputs to a transcritical, one dimensional, hydraulic/geomorphic numerical model, which was used to map the flow characteristics and shear stress conditions near the knickpoint. Such detailed flow calculations do not exist in the published literature. The coupling of field and modeling work resulted in the development of a blueprint methodology, which can be adopted in different parts of the country for evaluating knickpoint evolution. This information will assist local government agencies in better understanding the principal factors that cause knickpoint propagation and help estimate the needed response time to control the propagation of a knickpoint after one has been identified.
Resumo:
This Phase I report describes a preliminary evaluation of a new compaction monitoring system developed by Caterpillar, Inc. (CAT), for use as a quality control and quality assurance (QC/QA) tool during earthwork construction operations. The CAT compaction monitoring system consists of an instrumented roller with sensors to monitor machine power output in response to changes in soil machine interaction and is fitted with a global positioning system (GPS) to monitor roller location in real time. Three pilot tests were conducted using CAT’s compaction monitoring technology. Two of the sites were located in Peoria, Illinois, at the Caterpillar facilities. The third project was an actual earthwork grading project in West Des Moines, Iowa. Typical construction operations for all tests included the following steps: (1) aerate/till existing soil; (2) moisture condition soil with water truck (if too dry); (3) remix; (4) blade to level surface; and (5) compact soil using the CAT CP-533E roller instrumented with the compaction monitoring sensors and display screen. Test strips varied in loose lift thickness, water content, and length. The results of the study show that it is possible to evaluate soil compaction with relatively good accuracy using machine energy as an indicator, with the advantage of 100% coverage with results in real time. Additional field trials are necessary, however, to expand the range of correlations to other soil types, different roller configurations, roller speeds, lift thicknesses, and water contents. Further, with increased use of this technology, new QC/QA guidelines will need to be developed with a framework in statistical analysis. Results from Phase I revealed that the CAT compaction monitoring method has a high level of promise for use as a QC/QA tool but that additional testing is necessary in order to prove its validity under a wide range of field conditions. The Phase II work plan involves establishing a Technical Advisor Committee, developing a better understanding of the algorithms used, performing further testing in a controlled environment, testing on project sites in the Midwest, and developing QC/QA procedures.