37 resultados para Roadway live load model
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This report describes the measurement of dynamic (live load) deflections in a 240' x 30' three span continuous prestressed steel bridge, skewed 30 degrees. The design assumptions and prestressing procedure are described briefly, and the instrumentation and loading are discussed. The actual deflections are presented in tabular form, and the deflections due to the design live load are calculated. The maximum deflections are presented as a ratio of the span length, and the further use of prestressed steel beams is recommended.
Resumo:
Recent data compiled by the National Bridge Inventory revealed 29% of Iowa's approximate 24,600 bridges were either structurally deficient or functionally obsolete. This large number of deficient bridges and the high cost of needed repairs create unique problems for Iowa and many other states. The research objective of this project was to determine the load capacity of a particular type of deteriorating bridge – the precast concrete deck bridge – which is commonly found on Iowa's secondary roads. The number of these precast concrete structures requiring load postings and/or replacement can be significantly reduced if the deteriorated structures are found to have adequate load capacity or can be reliably evaluated. Approximately 600 precast concrete deck bridges (PCDBs) exist in Iowa. A typical PCDB span is 19 to 36 ft long and consists of eight to ten simply supported precast panels. Bolts and either a pipe shear key or a grouted shear key are used to join adjacent panels. The panels resemble a steel channel in cross-section; the web is orientated horizontally and forms the roadway deck and the legs act as shallow beams. The primary longitudinal reinforcing steel bundled in each of the legs frequently corrodes and causes longitudinal cracks in the concrete and spalling. The research team performed service load tests on four deteriorated PCDBs; two with shear keys in place and two without. Conventional strain gages were used to measure strains in both the steel and concrete, and transducers were used to measure vertical deflections. Based on the field results, it was determined that these bridges have sufficient lateral load distribution and adequate strength when shear keys are properly installed between adjacent panels. The measured lateral load distribution factors are larger than AASHTO values when shear keys were not installed. Since some of the reinforcement had hooks, deterioration of the reinforcement has a minimal affect on the service level performance of the bridges when there is minimal loss of cross-sectional area. Laboratory tests were performed on the PCDB panels obtained from three bridge replacement projects. Twelve deteriorated panels were loaded to failure in a four point bending arrangement. Although the panels had significant deflections prior to failure, the experimental capacity of eleven panels exceeded the theoretical capacity. Experimental capacity of the twelfth panel, an extremely distressed panel, was only slightly below the theoretical capacity. Service tests and an ultimate strength test were performed on a laboratory bridge model consisting of four joined panels to determine the effect of various shear connection configurations. These data were used to validate a PCDB finite element model that can provide more accurate live load distribution factors for use in rating calculations. Finally, a strengthening system was developed and tested for use in situations where one or more panels of an existing PCDB need strengthening.
Resumo:
Iowa has the same problem that confronts most states in the United States: many bridges constructed more than 20 years ago either have deteriorated to the point that they are inadequate for original design loads or have been rendered inadequate by changes in design/maintenance standards or design loads. Inadequate bridges require either strengthening or posting for reduced loads. A sizeable number of single span, composite concrete deck - steel I beam bridges in Iowa currently cannot be rated to carry today's design loads. Various methods for strengthening the unsafe bridges have been proposed and some methods have been tried. No method appears to be as economical and promising as strengthening by post-tensioning of the steel beams. At the time this research study was begun, the feasibility of posttensioning existing composite bridges was unknown. As one would expect, the design of a bridge-strengthening scheme utilizing post-tensioning is quite complex. The design involves composite construction stressed in an abnormal manner (possible tension in the deck slab), consideration of different sizes of exterior and interior beams, cover-plated beams already designed for maximum moment at midspan and at plate cut-off points, complex live load distribution, and distribution of post-tensioningforces and moments among the bridge beams. Although information is available on many of these topics, there is miminal information on several of them and no information available on the total design problem. This study, therefore, is an effort to gather some of the missing information, primarily through testing a half-size bridge model and thus determining the feasibility of strengthening composite bridges by post-tensioning. Based on the results of this study, the authors anticipate that a second phase of the study will be undertaken and directed toward strengthening of one or more prototype bridges in Iowa.
Resumo:
This paper presents the results of the static and dynamic testing of a three-span continuous I-beam highway bridge. Live load stress frequency curves for selected points are shown, and the static and dynamic load distribution to the longitudinal composite beam members are given. The bridge has four traffic lanes with a roadway width of 48 ft. Six longitudinal continuous WF beams act compositely with the reinforced concrete slab to carry the live load. The beams have partial length cover plates at the piers. Previous research has indicated that beams with partial length cover plates have a very low fatigue strength. It was found in this research that the magnitude of the stresses due to actual highway loads were very much smaller than those computed from specification loading. Also, the larger stresses which were measured occurred a relatively small number of times. These data indicate that some requirements for reduced allowable stresses at the ends of cover plates are too conservative. The load distribution to the longitudinal beams was determined for static and moving loads and includes the effect of impact on the distribution. The effective composite section was found at various locations to evaluate the load distribution data. The composite action was in negative as well as positive moment regions. The load distribution data indicate that the lateral distribution of live load is consistent with the specifications, but that there is longitudinal distribution, and therefore the specifications are too conservative.
Resumo:
Due to frequent accidental damage to prestressed concrete (P/C) bridges caused by impact from overheight vehicles, a project was initiated to evaluate the strength and load distribution characteristics of damaged P/C bridges. A comprehensive literature review was conducted. It was concluded that only a few references pertain to the assessment and repair of damaged P/C beams. No reference was found that involves testing of a damaged bridge(s) as well as the damaged beams following their removal. Structural testing of two bridges was conducted in the field. The first bridge tested, damaged by accidental impact, was the westbound (WB) I-680 bridge in Beebeetown, Iowa. This bridge had significant damage to the first and second beams consisting of extensive loss of section and the exposure of numerous strands. The second bridge, the adjacent eastbound (EB) structure, was used as a baseline of the behavior of an undamaged bridge. Load testing concluded that a redistribution of load away from the damaged beams of the WB bridge was occurring. Subsequent to these tests, the damaged beams in the WB bridge were replaced and the bridge retested. The repaired WB bridge behaved, for the most part, like the undamaged EB bridge indicating that the beam replacement restored the original live load distribution patterns. A large-scale bridge model constructed for a previous project was tested to study the changes in behavior due to incrementally applied damage consisting initially of only concrete removal and then concrete removal and strand damage. A total of 180 tests were conducted with the general conclusion that for exterior beam damage, the bridge load distribution characteristics were relatively unchanged until significant portions of the bottom flange were removed along with several strands. A large amount of the total applied moment to the exterior beam was redistributed to the interior beam of the model. Four isolated P/C beams were tested, two removed from the Beebeetown bridge and two from the aforementioned bridge model. For the Beebeetown beams, the first beam, Beam 1W, was tested in an "as removed" condition to obtain the baseline characteristics of a damaged beam. The second beam, Beam 2W, was retrofit with carbon fiber reinforced polymer (CFRP) longitudinal plates and transverse stirrups to strengthen the section. The strengthened Beam was 12% stronger than Beam 1W. Beams 1 and 2 from the bridge model were also tested. Beam 1 was not damaged and served as the baseline behavior of a "new" beam while Beam 2 was damaged and repaired again using CFRP plates. Prior to debonding of the plates from the beam, the behavior of both Beams 1 and 2 was similar. The retrofit beam attained a capacity greater than a theoretically undamaged beam prior to plate debonding. Analytical models were created for the undamaged and damaged center spans of the WB bridge; stiffened plate and refined grillage models were used. Both models were accurate at predicting the deflections in the tested bridge and should be similarly accurate in modeling other P/C bridges. The moment fractions per beam were computed using both models for the undamaged and damaged bridges. The damaged model indicates a significant decrease in moment in the damaged beams and a redistribution of load to the adjacent curb and rail as well as to the undamaged beam lines.
Resumo:
The primary objective of this project was to determine the effect of bridge width on deck cracking in bridges. Other parameters, such as bridge skew, girder spacing and type, abutment type, pier type, and number of bridge spans, were also studied. To achieve the above objectives, one bridge was selected for live-load and long-term testing. The data obtained from both field tests were used to calibrate a three-dimensional (3D) finite element model (FEM). Three different types of loading—live loading, thermal loading, and shrinkage loading—were applied. The predicted crack pattern from the FEM was compared to the crack pattern from bridge inspection results. A parametric study was conducted using the calibrated FEM. The general conclusions/recommendations are as follows: -- Longitudinal and diagonal cracking in the deck near the abutment on an integral abutment bridge is due to the temperature differences between the abutment and the deck. Although not likely to induce cracking, shrinkage of the deck concrete may further exacerbate cracks developed from thermal effects. -- Based upon a limited review of bridges in the Iowa DOT inventory, it appears that, regardless of bridge width, longitudinal and diagonal cracks are prevalent in integral abutment bridges but not in bridges with stub abutments. -- The parametric study results show that bridge width and skew have minimal effect on the strain in the deck bridge resulting from restrained thermal expansion. -- Pier type, girder type, girder spacing, and number of spans also appear to have no influence on the level of restrained thermal expansion strain in the deck near the abutment.
Resumo:
The spacing of adjacent wheel lines of dual-lane loads induces different lateral live load distributions on bridges, which cannot be determined using the current American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) or Load Factor Design (LFD) equations for vehicles with standard axle configurations. Current Iowa law requires dual-lane loads to meet a five-foot requirement, the adequacy of which needs to be verified. To improve the state policy and AASHTO code specifications, it is necessary to understand the actual effects of wheel-line spacing on lateral load distribution. The main objective of this research was to investigate the impact of the wheel-line spacing of dual-lane loads on the lateral load distribution on bridges. To achieve this objective, a numerical evaluation using two-dimensional linear elastic finite element (FE) models was performed. For simulation purposes, 20 prestressed-concrete bridges, 20 steel bridges, and 20 slab bridges were randomly sampled from the Iowa bridge database. Based on the FE results, the load distribution factors (LDFs) of the concrete and steel bridges and the equivalent lengths of the slab bridges were derived. To investigate the variations of LDFs, a total of 22 types of single-axle four-wheel-line dual-lane loads were taken into account with configurations consisting of combinations of various interior and exterior wheel-line spacing. The corresponding moment and shear LDFs and equivalent widths were also derived using the AASHTO equations and the adequacy of the Iowa DOT five-foot requirement was evaluated. Finally, the axle weight limits per lane for different dual-lane load types were further calculated and recommended to complement the current Iowa Department of Transportation (DOT) policy and AASHTO code specifications.
Resumo:
America’s roadways are in serious need of repair. According to the American Society of Civil Engineers (ASCE), one-third of the nation’s roads are in poor or mediocre condition. ASCE has estimated that under these circumstances American drivers will sacrifice $5.8 billion and as many as 13,800 fatalities a year from 1999 to 2001 ( 1). A large factor in the deterioration of these roads is a result of how well the steel reinforcement transfers loads across the concrete slabs. Fabricating this reinforcement using a shape conducive to transferring these loads will help to aid in minimizing roadway damage. Load transfer within a series of concrete slabs takes place across the joints. For a typical concrete paved road, these joints are approximately 1/8-inch gaps between two adjacent slabs. Dowel bars are located at these joints and used to transfer load from one slab to its adjacent slabs. As long as the dowel bar is completely surrounded by concrete no problems will occur. However, when the hole starts to oblong a void space is created and difficulties can arise. This void space is formed due to a stress concentration where the dowel contacts the concrete. Over time, the repeated process of traffic traveling over the joint crushes the concrete surrounding the dowel bar and causes a void in the concrete. This void inhibits the dowel’s ability to effectively transfer load across the joint. Furthermore, this void gives water and other particles a place to collect that will eventually corrode and potentially bind or lock the joint so that no thermal expansion is allowed. Once there is no longer load transferred across the joint, the load is transferred to the foundation and differential settlement of the adjacent slabs will occur.
Resumo:
America’s roadways are in serious need of repair. According to the American Society of Civil Engineers (ASCE), one-third of the nation’s roads are in poor or mediocre condition (1). ASCE has estimated that under these circumstances American drivers will sacrifice $5.8 billion and as many as 13,800 fatalities a year from 1999 to 2001 ( 1). A large factor in the deterioration of these roads is a result of how well the steel reinforcement transfers loads across the concrete slabs. Fabricating this reinforcement using a shape conducive to transferring these loads will help to aid in minimizing roadway damage. Load transfer within a series of concrete slabs takes place across the joints. For a typical concrete paved road, these joints are approximately 1/8-inch gaps between two adjacent slabs. Dowel bars are located at these joints and used to transfer load from one slab to its adjacent slabs. As long as the dowel bar is completely surrounded by concrete no problems will occur. However, when the hole starts to oblong a void space is created and difficulties can arise. This void space is formed due to a stress concentration where the dowel contacts the concrete. Over time, the repeated process of traffic traveling over the joint crushes the concrete surrounding the dowel bar and causes a void in the concrete. This void inhibits the dowel’s ability to effectively transfer load across the joint. Furthermore, this void gives water and other particles a place to collect that will eventually corrode and potentially bind or lock the joint so that no thermal expansion is allowed. Once there is no longer load transferred across the joint, the load is transferred to the foundation and differential settlement of the adjacent slabs will occur.
Resumo:
This report presents a review of literature on geosynthetic reinforced soil (GRS) bridge abutments, and test results and analysis from two field demonstration projects (Bridge 1 and Bridge 2) conducted in Buchanan County, Iowa, to evaluate the feasibility and cost effectiveness of the use of GRS bridge abutments on low-volume roads (LVRs). The two projects included GRS abutment substructures and railroad flat car (RRFC) bridge superstructures. The construction costs varied from $43k to $49k, which was about 50 to 60% lower than the expected costs for building a conventional bridge. Settlement monitoring at both bridges indicated maximum settlements ≤1 in. and differential settlements ≤ 0.2 in transversely at each abutment, during the monitoring phase. Laboratory testing on GRS fill material, field testing, and in ground instrumentation, abutment settlement monitoring, and bridge live load (LL) testing were conducted on Bridge 2. Laboratory test results indicated that shear strength parameters and permanent deformation behavior of granular fill material improved when reinforced with geosynthetic, due to lateral restraint effect at the soilgeosynthetic interface. Bridge LL testing under static loads indicated maximum deflections close to 0.9 in and non-uniform deflections transversely across the bridge due to poor load transfer between RRFCs. The ratio of horizontal to vertical stresses in the GRS fill was low (< 0.25), indicating low lateral stress on the soil surrounding GRS fill material. Bearing capacity analysis at Bridge 2 indicated lower than recommended factor of safety (FS) values due to low ultimate reinforcement strength of the geosynthetic material used in this study and a relatively weak underlying foundation layer. Global stability analysis of the GRS abutment structure revealed a lower FS than recommended against sliding failure along the interface of the GRS fill material and the underlying weak foundation layer. Design and construction recommendations to help improve the stability and performance of the GRS abutment structures on future projects, and recommendations for future research are provided in this report.
Resumo:
The US Highway 6 Bridge over Keg Creek outside of Council Bluffs, Iowa is a demonstration bridge site chosen to put into practice newly-developed Accelerated Bridge Construction (ABC) concepts. One of these new concepts is the use of prefabricated high performance concrete (HPC) bridge elements that are connected, in place, utilizing advanced material closure-pours and quick-to-install connection details. The Keg Creek Bridge is the first bridge in the US to utilize moment-resisting ultra-high performance concrete (UHPC) joints in negative moment regions over piers. Through laboratory and live load field testing, performance of these transverse joints as well as global bridge behavior is quantified and examined. The effectiveness of the structural performance of the bridge is evaluated to provide guidance for future designs of similar bridges throughout the US.
Resumo:
The AASHO specifications for highway bridges require that in designing a bridge, the live load must be multiplied by an impact factor for which a formula is given, dependent only upon the length of the bridge. This formula is a result of August Wohler's tests on fatigue in metals, in which he determined that metals which are subjected to large alternating loads will ultimately fail at lower stresses than those which are subjected only to continuous static loads. It is felt by some investigators that this present impact factor is not realistic, and it is suggested that a consideration of the increased stress due to vibrations caused by vehicles traversing the span would result in a more realistic impact factor than now exists. Since the current highway program requires a large number of bridges to be built, the need for data on dynamic behavior of bridges is apparent. Much excellent material has already been gathered on the subject, but many questions remain unanswered. This work is designed to investigate further a specific corner of that subject, and it is hoped that some useful light may be shed on the subject. Specifically this study hopes to correlate, by experiment on a small scale test bridge, the upper limits of impact utilizing a stationary, oscillating load to represent axle loads moving past a given point. The experiments were performed on a small scale bridge which is located in the basement of the Iowa Engineering Experiment Station. The bridge is a 25 foot simply supported span, 10 feet wide, supported by four beams with a composite concrete slab. It is assumed that the magnitude of the predominant forcing function is the same as the magnitude of the dynamic force produced by a smoothly rolling load, which has a frequency determined by the passage of axles. The frequency of passage of axles is defined as the speed of the vehicle divided by the axle spacing. Factors affecting the response of the bridge to this forcing function are the bridge stiffness and mass, which determine the natural frequency, and the effects of solid damping due to internal structural energy dissipation.
Resumo:
The purpose of this investigation was to study the flexural fatigue strength of two prestressed steel I-beams which had previously been fabricated in connection with a jointly sponsored project under the auspices of the Iowa State Highway Commission. The beams were prestressed by deflecting them under the action of a concentrated load at the center of a simple span, then welding unstressed high strength steel plates to the top and bottom flanges to retain a predetermined amount of prestress. The beams were rolled sections of A36 steel and the plates were USS "T-1" steel. Each of the two test specimens were subjected to an identical repeated loading until a fatigue failure occurred. The loading was designed to produce stresses equivalent to those which would have occurred in a simulated bridge and amounted to 84 percent of a standard H-15 live load including impact. One of the beams sustained 2,469,100 repetitions of load to failure and the other sustained 2,756,100 cycles. Following the fatigue tests, an experimental study was made to determine the state of stress that had been retained in the prestressed steel beams. This information, upon which the calculated stresses of the test could be superimposed, provided a method of correlating the fatigue strength of the beams with the fatigue information available on the two steels involved.
Resumo:
The use of Railroad Flatcars (RRFCs) as the superstructure on low-volume county bridges has been investigated in a research project conducted by the Bridge Engineering Center at Iowa State University. These bridges enable county engineers to replace old, inadequate county bridge superstructures for less than half the cost and in a shorter construction time than required for a conventional bridge. To illustrate their constructability, adequacy, and economy, two RRFC demonstration bridges were designed, constructed, and tested: one in Buchanan County and the other in Winnebago County. The Buchanan County Bridge was constructed as a single span with 56-ft-long flatcars supported at their ends by new, concrete abutments. The use of concrete in the substructure allowed for an integral abutment at one end of the bridge with an expansion joint at the other end. Reinforced concrete beams (serving as longitudinal connections between the three adjacent flatcars) were installed to distribute live loads among the RRFCs. Guardrails and an asphalt milling driving surface completed the bridge. The Winnebago County Bridge was constructed using 89-ft-long flatcars. Preliminary calculations determined that they were not adequate to span 89 ft as a simple span. Therefore, the flatcars were supported by new, steel-capped piers and abutments at the RRFCs' bolsters and ends, resulting in a 66-ft main span and two 10-ft end spans. Due to the RRFC geometry, the longitudinal connections between adjacent RRFCs were inadequate to support significant loads; therefore, transverse, recycled timber planks were utilized to effectively distribute live loads to all three RRFCs. A gravel driving surface was placed on top of the timber planks, and a guardrail system was installed to complete the bridge. Bridge behavior predicted by grillage models for each bridge was validated by strain and deflection data from field tests; it was found that the engineered RRFC bridges have live load stresses significantly below the AASHTO Bridge Design Specification limits. To assist in future RRFC bridge projects, RRFC selection criteria were established for visual inspection and selection of structurally adequate RRFCs. In addition, design recommendations have been developed to simplify live load distribution calculations for the design of the bridges. Based on the results of this research, it has been determined that through proper RRFC selection, construction, and engineering, RRFC bridges are a viable, economic replacement system for low-volume road bridges.
Resumo:
There are hundreds of structurally deficient or functionally obsolete bridges in the state of Iowa. With the majority of these bridges located on rural county roads where there is limited funding available to replace the bridges, diagnostic load testing can be utilized to determine the actual load carrying capacity of the bridge. One particular family or fleet of bridges that has been determined to be desirable for load testing consists of single-span bridges with non-composite, cast-in-place concrete decks, steel stringers, and timber substructures. Six bridges with poor performing superstructure and substructure from the aforementioned family of bridges were selected to be load tested. The six bridges were located on rural roads in five different counties in Iowa: Boone, Carroll, Humboldt, Mahaska, and Marshall. Volume I of this report focuses on evaluating the superstructure for this family of bridges. This volume discusses the behavior characteristics that influence the load carrying capacity of this fleet of bridges. In particular, the live load distribution, partial composite action, and bearing restraint were investigated as potential factors that could influence the bridge ratings. Implementing fleet management practices, the bridges were analyzed to determine if the load test results could be predicted to better analyze previously untested bridges. For this family of bridges it was found that the ratings increased as a result of the load testing demonstrating a greater capacity than determined analytically. Volume II of this report focuses on evaluating the timber substructure for this family of bridges. In this volume, procedures for detecting pile internal decay using nondestructive ultrasonic stress wave techniques, correlating nondestructive ultrasonic stress wave techniques to axial compression tests to estimate deteriorated pile residual strength, and evaluating load distribution through poor performing timber substructure elements by instrumenting and load testing the abutments of the six selected bridges are discussed. Also, in this volume pile repair methods for restoring axial and bending capacities of pile are developed and evaluated.