334 resultados para Road traffic crash

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This project explores the user costs and benefits of winter road closures. Severe winter weather makes travel unsafe and dramatically increases crash rates. When conditions become unsafe due to winter weather, road closures should allow users to avoid crash costs and eliminate costs associated with rescuing stranded motorists. Therefore, the benefits of road closures are the avoided safety costs. The costs of road closures are the delays that are imposed on motorists and motor carriers who would have made the trip had the road not been closed. This project investigated the costs and benefits of road closures and found that evaluating the benefits and costs is not as simple as it appears. To better understand the costs and benefits of road closures, the project investigates the literature, conducts interviews with shippers and motor carriers, and conducts case studies of road closures to determine what actually occurred on roadways during closures. The project also estimates a statistical model that relates weather severity to crash rates. Although, the statistical model is intended to illustrate the possibility to quantitatively relate measurable and predictable weather conditions to the safety performance of a roadway. In the future, weather conditions such as snow fall intensity, visibility, etc., can be used to make objective measures of the safety performance of a roadway rather than relying on subjective evaluations of field staff. The review of the literature and the interviews clearly illustrate that not all delays (increased travel time) are valued the same. Expected delays (routine delays) are valued at the generalized costs (value of the driver’s time, fuel, insurance, wear and tear on the vehicle, etc.), but unexpected delays are valued much higher because they result in interruption of synchronous activities at the trip’s destination. To reduce the costs of delays resulting from road closures, public agencies should communicate as early as possible the likelihood of a road closure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Office of Transportation Data, in cooperation with the Federal Highway Administration, prepares this biennial traffic report. This report is used by federal, state, and local governmental agencies in determining highway needs, construction priorities, route location and environmental impact studies, and the application of appropriate design standards. The general public uses this information in determining the amount of traffic that passes a given area as they make their development plans and propose land use changes. The above reflects only a few of the many technical uses for this data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyze crash data collected by the Iowa Department of Transportation using Bayesian methods. The data set includes monthly crash numbers, estimated monthly traffic volumes, site length and other information collected at 30 paired sites in Iowa over more than 20 years during which an intervention experiment was set up. The intervention consisted in transforming 15 undivided road segments from four-lane to three lanes, while an additional 15 segments, thought to be comparable in terms of traffic safety-related characteristics were not converted. The main objective of this work is to find out whether the intervention reduces the number of crashes and the crash rates at the treated sites. We fitted a hierarchical Poisson regression model with a change-point to the number of monthly crashes per mile at each of the sites. Explanatory variables in the model included estimated monthly traffic volume, time, an indicator for intervention reflecting whether the site was a “treatment” or a “control” site, and various interactions. We accounted for seasonal effects in the number of crashes at a site by including smooth trigonometric functions with three different periods to reflect the four seasons of the year. A change-point at the month and year in which the intervention was completed for treated sites was also included. The number of crashes at a site can be thought to follow a Poisson distribution. To estimate the association between crashes and the explanatory variables, we used a log link function and added a random effect to account for overdispersion and for autocorrelation among observations obtained at the same site. We used proper but non-informative priors for all parameters in the model, and carried out all calculations using Markov chain Monte Carlo methods implemented in WinBUGS. We evaluated the effect of the four to three-lane conversion by comparing the expected number of crashes per year per mile during the years preceding the conversion and following the conversion for treatment and control sites. We estimated this difference using the observed traffic volumes at each site and also on a per 100,000,000 vehicles. We also conducted a prospective analysis to forecast the expected number of crashes per mile at each site in the study one year, three years and five years following the four to three-lane conversion. Posterior predictive distributions of the number of crashes, the crash rate and the percent reduction in crashes per mile were obtained for each site for the months of January and June one, three and five years after completion of the intervention. The model appears to fit the data well. We found that in most sites, the intervention was effective and reduced the number of crashes. Overall, and for the observed traffic volumes, the reduction in the expected number of crashes per year and mile at converted sites was 32.3% (31.4% to 33.5% with 95% probability) while at the control sites, the reduction was estimated to be 7.1% (5.7% to 8.2% with 95% probability). When the reduction in the expected number of crashes per year, mile and 100,000,000 AADT was computed, the estimates were 44.3% (43.9% to 44.6%) and 25.5% (24.6% to 26.0%) for converted and control sites, respectively. In both cases, the difference in the percent reduction in the expected number of crashes during the years following the conversion was significantly larger at converted sites than at control sites, even though the number of crashes appears to decline over time at all sites. Results indicate that the reduction in the expected number of sites per mile has a steeper negative slope at converted than at control sites. Consistent with this, the forecasted reduction in the number of crashes per year and mile during the years after completion of the conversion at converted sites is more pronounced than at control sites. Seasonal effects on the number of crashes have been well-documented. In this dataset, we found that, as expected, the expected number of monthly crashes per mile tends to be higher during winter months than during the rest of the year. Perhaps more interestingly, we found that there is an interaction between the four to three-lane conversion and season; the reduction in the number of crashes appears to be more pronounced during months, when the weather is nice than during other times of the year, even though a reduction was estimated for the entire year. Thus, it appears that the four to three-lane conversion, while effective year-round, is particularly effective in reducing the expected number of crashes in nice weather.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Public travel by motor vehicles is often necessary in road and street sections that have been officially closed for construction, repair, and/or other reasons. This authorization is permitted in order to provide access to homes and businesses located beyond the point of closure. The MUTCD does address appropriate use of specific regulatory signs at the entrance to closed sections; however, direct guidance for temporary traffic control measures within these areas is not included but may be needed. Interpretation and enforcement of common practices may vary among transportation agencies. For example, some law enforcement officers in Iowa have indicated a concern regarding enforcement and jurisdiction of traffic laws in these areas because the Code of Iowa only appears to address violations on roadways open to “public travel.” Enforcement of traffic laws in closed road sections is desirable to maintain safety for workers and for specifically authorized road users. In addition, occasional unauthorized entry by motor vehicles is experienced in closed road areas causing property damage. Citations beyond simple trespass may be advisable to provide better security for construction sites, reduce economic losses from damage to completed work, and create safer work zones.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Iowa Department of Transportation (DOT) requested a road safety audit (RSA) of the US 59/IA 9 intersection in northwestern Iowa, just south of the Minnesota border, to assess intersection environmental issues and crash history and recommend appropriate mitigation to address the identified safety issues at the intersection. Although the number of crashes at the location has not been significantly higher than the statewide average for similar intersections, the severity of these crashes has been of concern. This RSA was unique in that it included intersection video observation and recorded traffic conflict data analysis, along with the daylight and nighttime field reviews. This report outlines the findings and recommendations of the RSA team for addressing the safety concerns at this intersection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Incentive/disincentive clauses (I/D) are designed to award payments to contractors if they complete work ahead of schedule and to deduct payments if they exceed the completion time. A previously unanswered question is, “Did the costs of the actual work zone impacts that were avoided justify the incentives paid?” This report answers that question affirmatively based on an evaluation of 20 I/D projects in Missouri from 2008 to 2011. Road user costs (RUC) were used to quantify work zone impacts and included travel delays, vehicle operating costs, and crash costs. These were computed using work zone traffic conditions for partial-closure projects and detour volumes and routes for full-closure projects. Conditions during construction were compared to after construction. Crash costs were computed using Highway Safety Manual methodology. Safety Performance Functions produced annual crash frequencies that were translated into crash cost savings. In considering an average project, the percentage of RUC savings was around 13% of the total contract amount, or $444,389 of $3,464,620. The net RUC savings produced was around $7.2 million after subtracting the approximately $1.7 million paid in incentives. In other words, for every dollar paid in incentives, approximately 5.3 dollars of RUC savings resulted. I/D provisions were very successful in saving RUC for projects with full-closure, projects in urban areas, and emergency projects. Rural, non-emergency projects successfully saved RUC but not at the same level as other projects. The I/D contracts were also compared to all Missouri Department of Transportation contracts for the same time period. The results show that I/D projects had a higher on-time completion percentage and a higher number of bids per call than average projects. But I/D projects resulted in 4.52% higher deviation from programmed costs and possibly more changes made after the award. A survey of state transportation departments and contractors showed that both agreed to the same issues that affect the success of I/D contracts. Legal analysis suggests that liquidated damages is preferred to disincentives, since enforceability of disincentives may be an issue. Overall, in terms of work zone impact mitigation, I/D contracts are very effective at a relatively low cost.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Despite a trend of decreasing teen fatalities due to motor vehicle crashes over the past decade, they remain the leading cause of adolescent fatalities in Iowa. The purpose of this study was to create detailed case studies of each fatal motor vehicle crash involving a driver under the age of 20 that occurred in Iowa in 2009, 2010, and 2011. Data for each crash were gathered from media sources, law enforcement agencies, and the Iowa Department of Transportation. The driving records of the teens, which included their licensure history, prior traffic citations, and prior crashes, were also acquired. In addition, data about the charges filed against a teen as a result of being involved in a fatal crash were obtained. A total of 126 crashes involving 131 teen drivers that resulted in 143 fatalities were analyzed. Many findings for fatal crashes involving teen drivers in Iowa are consistent with national trends, including the overrepresentation of male drivers, crash involvement that increases with age, crash involvement per vehicle miles traveled that decreases with age, and prevalence of single-vehicle road departure crashes. Relative to national statistics, teen fatalities from crashes in Iowa are more likely to occur from midnight to 6am and from 9am to noon. Crash type varied by driver age and county population level. Teen drivers contributed to the fatal crashes at a rate of 74%; contribution of the teen driver was unknown for 11% of crashes. Speed was a factor for about 25% of the crashes for which a teen driver was at fault. The same was also true of alcohol/drug impairment. Only 20% of the rear-seat occupants of the teen drivers’ vehicles wore seat belts compared to 60% use for the front-seat occupants. Analysis of the teens’ driving records prior to the fatal crash suggests at-fault crashes and speeding violations are associated with contributing to the fatal crash.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although many larger Iowa cities have staff traffic engineers who have a dedicated interest in safety, smaller jurisdictions do not. Rural agencies and small communities must rely on consultants, if available, or local staff to identify locations with a high number of crashes and to devise mitigating measures. However, smaller agencies in Iowa have other available options to receive assistance in obtaining and interpreting crash data. These options are addressed in this manual. Many proposed road improvements or alternatives can be evaluated using methods that do not require in-depth engineering analysis. The Iowa Department of Transportation (DOT) supported developing this manual to provide a tool that assists communities and rural agencies in identifying and analyzing local roadway-related traffic safety concerns. In the past, a limited number of traffic safety professionals had access to adequate tools and training to evaluate potential safety problems quickly and efficiently and select possible solutions. Present-day programs and information are much more conducive to the widespread dissemination of crash data, mapping, data comparison, and alternative selections and comparisons. Information is available and in formats that do not require specialized training to understand and use. This manual describes several methods for reviewing crash data at a given location, identifying possible contributing causes, selecting countermeasures, and conducting economic analyses for the proposed mitigation. The Federal Highway Administration (FHWA) has also developed other analysis tools, which are described in the manual. This manual can also serve as a reference for traffic engineers and other analysts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A section of US 52 between Dubuque and Luxemburg, Iowa, was listed in the top 5% of Iowa highways for severe crashes involving impaired drivers and single vehicle run-off-road crashes during 2001–2005, and several crashes have occurred on this roadway near the towns of Luxemburg, Holy Cross, and Rickardsville, Iowa, many on curves. Staff and officials from the Iowa Department of Transportation (Iowa DOT), Iowa State Patrol, Governor’s Traffic Safety Bureau, Federal Highway Administration, Center for Transportation Research and Education Dubuque County, and a retired fire chief met to review crash data and discuss potential safety improvements to U.S. Highway 52. This report outlines the findings and recommendations of the road safety audit team to address the safety concerns on this US 52 corridor and explains several mitigation strategies that the Iowa DOT District 6 Office has selected.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In April 2008 a preliminary investigation of fatal and major injury crashes on Iowa’s primary road system from 2001 through 2007 was conducted by the Iowa Department of Transportation, Office of Traffic and Safety. A mapping of these data revealed an apparent concentration of these serious crashes on a section of Iowa 25 north of Creston. Based on this information, a road safety audit of this roadway section was requested by the Office of Traffic and Safety. Iowa 25 is a two-lane asphaltic concrete pavement roadway, 22 ft in width with approximately 6 ft wide granular shoulders. Originally constructed in 1939, the roadway was last rehabilitated in 1996 with a 4-in. asphalt overlay. Except for shoulder paving through a curve area, no additional work beyond routine maintenance has been accomplished in the section. The 2004 traffic map indicates that IA 25 has a traffic volume of approximately 2070 vehicles per day with 160 commercial vehicles. The posted speed is 55 mph. This report contains a discussion of audit team findings, crash and roadway data, and recommendations for possible mitigation of safety concerns for this roadway section.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Approximately 13.2 miles of US 6 in eastern Iowa extends from the east corporate limits of Iowa City, Iowa, to the west corporate limits of West Liberty, Iowa. This segment of US 6 is a service level B primary highway, with an annual daily traffic volume varying from 3,480 vehicles per day (vpd) to 5,700 vpd. According to 2001–2007 crash density data from the Iowa Department of Transportation (Iowa DOT), the corridor is currently listed among the top 5% of non-freeway Iowa DOT roads in several crash categories, including crashes involving excessive speed, impaired drivers, single-vehicle run-off-road, and multiple-vehicle crossed centerline. A road safety audit of this corridor was deemed appropriate by the Iowa Department of Transportation’s Office of Traffic and Safety. Staff and officials from the Iowa DOT, Iowa State Patrol, Governor’s Traffic Safety Bureau, Federal Highway Administration, Center for Transportation Research and Education, and several local law enforcement and transportation agencies met to review crash data and discuss potential safety improvements to this segment of US 6. This report outlines the findings and recommendations of the road safety audit team to address the safety concerns on this US 6 corridor and explains several selected mitigation strategies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

U.S. Highway 61 between Muscatine and Davenport, Iowa, is a four-lane divided section of road approximately 21 miles in length. This section was found to be among the top 5% of Iowa roadways for single-vehicle run-off-road, impaired driver, unbelted driver, and speed-related crashes for the period of 2001 through 2005. A road safety audit of this corridor was deemed appropriate by the Iowa Department of Transportation’s Office of Traffic and Safety. Staff and officials from the Iowa Department of Transportation (Iowa DOT), Iowa State Patrol, Governor’s Traffic Safety Bureau, Federal Highway Administration, Center for Transportation Research and Education, and several local law enforcement and transportation agencies met to review crash data and discuss potential safety improvements to US 61. This report outlines the findings and recommendations of the road safety audit team to address the safety concerns on this US 61 corridor and explains several selected mitigation strategies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

On the October 7 and 8, 2008, a road safety audit was conducted for the intersection of US 61/Harrison Street and West Locust Street in Davenport, Iowa. US 61/Harrison Street is a one-way street and a principal arterial route through Davenport, with three southbound lanes. Locust Street is a four-lane, two-way minor arterial running across the city from west to east. The last major improvement at this intersection was implemented approximately 20 years ago. The Iowa Department of Transportation requested a safety audit of this intersection in response to a high incidence of crashes at the location over the past several years, in view of the fact that no major improvements are anticipated for this intersection in the immediate future. The road safety audit team discussed current conditions at the intersection and reviewed the last seven years of crash data. The team also made daytime and nighttime field visits to the intersection to examine field conditions and observe traffic flow and crossing guard operations with younger pedestrians. After discussing key issues, the road safety audit team drew conclusions and suggested possible enforcement, engineering, public information, and educational strategies for mitigation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A road safety audit was conducted for a 7.75 mile section of County Road X-37 in Louisa County, Iowa. In 2006, the average annual daily traffic on this roadway was found to be 680 vehicles per day. Using crash data from 2001 to 2007, the Iowa Department of Transportation (Iowa DOT) has identified this roadway as being in the highest 5% of local rural roads in Iowa for single-vehicle runoff- road crashes. Considering these safety data, the Louisa County Engineer requested that a road safety audit be conducted to identify areas of safety concerns and recommend low-cost mitigation to address those concerns. Staff and officials from the Iowa DOT, Governor’s Traffic Safety Bureau, Federal Highway Administration, Institute for Transportation, and local law enforcement and transportation agencies met to review crash data and discuss potential safety improvements to this segment of X-37. This report outlines the findings and recommendations of the road safety audit team to address the safety concerns on this X-37 corridor and explain several selected mitigation strategies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A road safety audit was conducted for a seven-mile section of County Road W-55 in Washington County, Iowa. In 2006, the average annual daily traffic on this roadway was found to be 1,290 vehicles per day. Using crash data from 2001 to 2007, the Iowa Department of Transportation (Iowa DOT) has identified this roadway as being in the top 5% of Iowa secondary rural roads with the highest density of serious (fatal and major injury) crashes for single-vehicle run-off-road incidents. Considering these safety data, the Washington County Engineer requested that a road safety audit be conducted to identify areas with safety concerns and to recommend low-cost mitigation to address those concerns. Staff and officials from the Iowa DOT, Iowa State Patrol, Governor’s Traffic Safety Bureau, Federal Highway Administration, Institute for Transportation, and local law enforcement and transportation agencies met to review crash data and discuss potential safety improvements to this segment of W-55. This report outlines the findings and recommendations of the road safety audit team to address the safety concerns on this W-55 corridor and explain several selected mitigation strategies.