146 resultados para Road Crashes
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
A section of US 52 between Dubuque and Luxemburg, Iowa, was listed in the top 5% of Iowa highways for severe crashes involving impaired drivers and single vehicle run-off-road crashes during 2001–2005, and several crashes have occurred on this roadway near the towns of Luxemburg, Holy Cross, and Rickardsville, Iowa, many on curves. Staff and officials from the Iowa Department of Transportation (Iowa DOT), Iowa State Patrol, Governor’s Traffic Safety Bureau, Federal Highway Administration, Center for Transportation Research and Education Dubuque County, and a retired fire chief met to review crash data and discuss potential safety improvements to U.S. Highway 52. This report outlines the findings and recommendations of the road safety audit team to address the safety concerns on this US 52 corridor and explains several mitigation strategies that the Iowa DOT District 6 Office has selected.
Resumo:
A road safety audit was conducted for a 7.75 mile section of County Road X-37 in Louisa County, Iowa. In 2006, the average annual daily traffic on this roadway was found to be 680 vehicles per day. Using crash data from 2001 to 2007, the Iowa Department of Transportation (Iowa DOT) has identified this roadway as being in the highest 5% of local rural roads in Iowa for single-vehicle runoff- road crashes. Considering these safety data, the Louisa County Engineer requested that a road safety audit be conducted to identify areas of safety concerns and recommend low-cost mitigation to address those concerns. Staff and officials from the Iowa DOT, Governor’s Traffic Safety Bureau, Federal Highway Administration, Institute for Transportation, and local law enforcement and transportation agencies met to review crash data and discuss potential safety improvements to this segment of X-37. This report outlines the findings and recommendations of the road safety audit team to address the safety concerns on this X-37 corridor and explain several selected mitigation strategies.
Resumo:
Jefferson County Road H-46 from Redwood Avenue to the southeast corporate limits (SCL) of Fairfield, Iowa, is a paved roadway approximately 6.5 miles long made of asphaltic concrete pavement with curvilinear alignment. The roadway consists of a 22 ft wide pavement, last overlaid in 2002, with 3 to 4 ft wide earth shoulders. Traffic estimates indicated volumes ranging from 500 to 1,590 vehicles per day, with numbers increasing as the route nears Fairfield. This roadway was found to be among the highest 5 percent of similar Iowa roadways in terms of severity of run-off-road crashes. In response, Iowa Department of Transportation (Iowa DOT) requested a road safety audit to examine the roadway and suggest possible mitigation. Representatives from the Iowa DOT, Federal Highway Administration, Institute for Transportation, local law enforcement, and local government met to review crash data and discuss potential safety improvements to this segment H-46. This report outlines the findings and recommendations of the road safety audit team for addressing the safety concerns on this roadway.
Resumo:
On October 20–21, 2009, two road safety audits were conducted in Lee County, Iowa: one for a 6 mile section of County Road X-23 from IA 2 to the south corporate limits of West Point and one for a 9.7 mile section of County Road W-62 from US 218 to IA 27. Both roads have high severe crash histories for the years of 2001 through 2008. Using these crash data, the Iowa Department of Transportation (Iowa DOT) has identified County Road X-23 as being in the top 5 percent of similar roads for run-off-road crashes. The Iowa DOT lists County Road W-62 as a high-risk rural road that has above-average crash numbers and is eligible for funding under the Federal High-Risk Rural Road Program. Considering these issues, the Lee County Engineer and Iowa DOT requested that road safety audits be conducted to address the safety concerns and to suggest possible mitigation strategies.
Resumo:
Single-vehicle run-off-road crashes are the most common crash type on rural two-lane Iowa roads. Rumble strips have proven effective in mitigating these crashes, but the strips are commonly installed in paved shoulders on higher-volume roads that are owned by the State of Iowa. Lower-volume paved rural roads owned by local agencies do not commonly feature paved shoulders but frequently experience run-off-road crashes. This project involved installing rumble stripes, which are a combination of conventional rumble strips with a painted edge line placed on the surface of the milled area, along the edge of the travel lanes, but at a narrow width to avoid possible intrusion into the normal vehicle travel paths. The research described in this report was part of a project funded by the Federal Highway Administration, Iowa Highway Research Board, and Iowa Department of Transportation to evaluate the effectiveness of edge-line rumble strips in Iowa. The project evaluated the effectiveness of rumble stripes in reducing run-off-road crashes and in improving the longevity and wet-weather visibility of edge-line markings. This project consisted of two phases. The first phase was to select pilot study locations, select a set of test sites, install rumble stripes, summarize lessons learned during installation, and provide a preliminary assessment of the rumble stripes’ performance. The purpose of this report was to document results from Phase II. A before and after crash analysis was conducted to assess whether use of the treatment had resulted in fewer crashes. However, due to low sample size, results of the analysis were inconclusive. Lateral position was also evaluated before and after installation of the treatment to determine whether vehicles engaged in better lane keeping. Pavement marking wear was also assessed.
Resumo:
Single-vehicle run-off-road crashes are the most common crash type on rural two-lane Iowa roads. Rumble strips have been proven effective in mitigating these crashes, but these strips are commonly installed in paved shoulders adjacent to higher-volume roads owned by the State of Iowa. Lower-volume paved rural roads owned by local agencies do not commonly feature paved shoulders but frequently experience run-off-road crashes. This project involved installing “rumble stripes,” which are a combination of conventional rumble strips with a painted edge line placed on the surface of the milled area, along the edge of the travel lanes but at a narrow width to avoid possible intrusion into the normal vehicle travel paths. Candidate locations were selected from a list of paved local rural roads that were most recently listed in the top 5% of roads for run-off-road crashes in Iowa. Horizontal curves were the most favored locations for rumble stripe installation because they commonly experience roadway departure crashes. The research described in this report was part of a project funded by the Federal Highway Administration, Iowa Highway Research Board, and Iowa Department of Transportation to evaluate the effectiveness of edge line rumble strips in Iowa. The project evaluated the effectiveness of “rumble stripes” in reducing run-off-road crashes and in improving the longevity and wet weather visibility of edge line markings. This project consists of two phases. The first phase was to select pilot study locations, select a set of test sites, install rumble stripes, summarize lessons learned during installation, and provide a preliminary assessment of the rumble stripes’ performance. This information is summarized in this report. The purpose of the second phase is to provide a more long-term assessment of the performance of the pavement markings, conduct preliminary crash assessments, and evaluate lane keeping. This will result in a forthcoming second report.
Resumo:
Single vehicle run-off-road (ROR) crashes are the largest type of fatal passenger vehicle crash in the United States (NCHRP 500 2003). In Iowa, ROR crashes accounted for 36% of rural crashes and 9% of total crashes in 2006. Run-off-road crashes accounted for more than 61.8% of rural fatal crashes and 32.6% of total fatal crashes in Iowa in 2006. Paved shoulders are a potential countermeasure for ROR crashes. Several studies are available which have generally indicated that paved shoulders are effective in reducing crashes. However, the number of studies that quantify the benefits are limited. The research described in this report evaluates the effectiveness of paved shoulders. Model results indicated that covariate for speed limit was not significant at the 0.05 confidence level and was removed from the model. All other variables which resulted in the final model were significant at the 0.05 confidence level. The final model indicated that season of the year was significant in indicating expected number of total monthly crashes with a higher number of crashes occurring in the winter and fall than for spring and summer. The model also indicated that presence of rumble strips, paved shoulder width, unpaved shoulder width, and presence of a divided median were correlated with a decrease in crashes. The model also indicated that roadway sections with paved shoulders had fewer crashes in the after period as compared to both the before period and control sections. The actual impact of paved shoulders depends on several other covariates as indicated in the final model such as installation year and width of paved shoulders. However, comparing the expected number of total crashes before and after installation of paved shoulders for several scenarios indicated around a 4.6% reduction in the expected number of monthly crashes in the after period.
Resumo:
We analyze crash data collected by the Iowa Department of Transportation using Bayesian methods. The data set includes monthly crash numbers, estimated monthly traffic volumes, site length and other information collected at 30 paired sites in Iowa over more than 20 years during which an intervention experiment was set up. The intervention consisted in transforming 15 undivided road segments from four-lane to three lanes, while an additional 15 segments, thought to be comparable in terms of traffic safety-related characteristics were not converted. The main objective of this work is to find out whether the intervention reduces the number of crashes and the crash rates at the treated sites. We fitted a hierarchical Poisson regression model with a change-point to the number of monthly crashes per mile at each of the sites. Explanatory variables in the model included estimated monthly traffic volume, time, an indicator for intervention reflecting whether the site was a “treatment” or a “control” site, and various interactions. We accounted for seasonal effects in the number of crashes at a site by including smooth trigonometric functions with three different periods to reflect the four seasons of the year. A change-point at the month and year in which the intervention was completed for treated sites was also included. The number of crashes at a site can be thought to follow a Poisson distribution. To estimate the association between crashes and the explanatory variables, we used a log link function and added a random effect to account for overdispersion and for autocorrelation among observations obtained at the same site. We used proper but non-informative priors for all parameters in the model, and carried out all calculations using Markov chain Monte Carlo methods implemented in WinBUGS. We evaluated the effect of the four to three-lane conversion by comparing the expected number of crashes per year per mile during the years preceding the conversion and following the conversion for treatment and control sites. We estimated this difference using the observed traffic volumes at each site and also on a per 100,000,000 vehicles. We also conducted a prospective analysis to forecast the expected number of crashes per mile at each site in the study one year, three years and five years following the four to three-lane conversion. Posterior predictive distributions of the number of crashes, the crash rate and the percent reduction in crashes per mile were obtained for each site for the months of January and June one, three and five years after completion of the intervention. The model appears to fit the data well. We found that in most sites, the intervention was effective and reduced the number of crashes. Overall, and for the observed traffic volumes, the reduction in the expected number of crashes per year and mile at converted sites was 32.3% (31.4% to 33.5% with 95% probability) while at the control sites, the reduction was estimated to be 7.1% (5.7% to 8.2% with 95% probability). When the reduction in the expected number of crashes per year, mile and 100,000,000 AADT was computed, the estimates were 44.3% (43.9% to 44.6%) and 25.5% (24.6% to 26.0%) for converted and control sites, respectively. In both cases, the difference in the percent reduction in the expected number of crashes during the years following the conversion was significantly larger at converted sites than at control sites, even though the number of crashes appears to decline over time at all sites. Results indicate that the reduction in the expected number of sites per mile has a steeper negative slope at converted than at control sites. Consistent with this, the forecasted reduction in the number of crashes per year and mile during the years after completion of the conversion at converted sites is more pronounced than at control sites. Seasonal effects on the number of crashes have been well-documented. In this dataset, we found that, as expected, the expected number of monthly crashes per mile tends to be higher during winter months than during the rest of the year. Perhaps more interestingly, we found that there is an interaction between the four to three-lane conversion and season; the reduction in the number of crashes appears to be more pronounced during months, when the weather is nice than during other times of the year, even though a reduction was estimated for the entire year. Thus, it appears that the four to three-lane conversion, while effective year-round, is particularly effective in reducing the expected number of crashes in nice weather.
Resumo:
The Iowa Department of Transportation (DOT) requested a road safety audit (RSA) of the US 59/IA 9 intersection in northwestern Iowa, just south of the Minnesota border, to assess intersection environmental issues and crash history and recommend appropriate mitigation to address the identified safety issues at the intersection. Although the number of crashes at the location has not been significantly higher than the statewide average for similar intersections, the severity of these crashes has been of concern. This RSA was unique in that it included intersection video observation and recorded traffic conflict data analysis, along with the daylight and nighttime field reviews. This report outlines the findings and recommendations of the RSA team for addressing the safety concerns at this intersection.
Resumo:
In April 2008 a preliminary investigation of fatal and major injury crashes on Iowa’s primary road system from 2001 through 2007 was conducted by the Iowa Department of Transportation, Office of Traffic and Safety. A mapping of these data revealed an apparent concentration of these serious crashes on a section of Iowa 25 north of Creston. Based on this information, a road safety audit of this roadway section was requested by the Office of Traffic and Safety. Iowa 25 is a two-lane asphaltic concrete pavement roadway, 22 ft in width with approximately 6 ft wide granular shoulders. Originally constructed in 1939, the roadway was last rehabilitated in 1996 with a 4-in. asphalt overlay. Except for shoulder paving through a curve area, no additional work beyond routine maintenance has been accomplished in the section. The 2004 traffic map indicates that IA 25 has a traffic volume of approximately 2070 vehicles per day with 160 commercial vehicles. The posted speed is 55 mph. This report contains a discussion of audit team findings, crash and roadway data, and recommendations for possible mitigation of safety concerns for this roadway section.
Resumo:
Approximately 13.2 miles of US 6 in eastern Iowa extends from the east corporate limits of Iowa City, Iowa, to the west corporate limits of West Liberty, Iowa. This segment of US 6 is a service level B primary highway, with an annual daily traffic volume varying from 3,480 vehicles per day (vpd) to 5,700 vpd. According to 2001–2007 crash density data from the Iowa Department of Transportation (Iowa DOT), the corridor is currently listed among the top 5% of non-freeway Iowa DOT roads in several crash categories, including crashes involving excessive speed, impaired drivers, single-vehicle run-off-road, and multiple-vehicle crossed centerline. A road safety audit of this corridor was deemed appropriate by the Iowa Department of Transportation’s Office of Traffic and Safety. Staff and officials from the Iowa DOT, Iowa State Patrol, Governor’s Traffic Safety Bureau, Federal Highway Administration, Center for Transportation Research and Education, and several local law enforcement and transportation agencies met to review crash data and discuss potential safety improvements to this segment of US 6. This report outlines the findings and recommendations of the road safety audit team to address the safety concerns on this US 6 corridor and explains several selected mitigation strategies.
Resumo:
U.S. Highway 61 between Muscatine and Davenport, Iowa, is a four-lane divided section of road approximately 21 miles in length. This section was found to be among the top 5% of Iowa roadways for single-vehicle run-off-road, impaired driver, unbelted driver, and speed-related crashes for the period of 2001 through 2005. A road safety audit of this corridor was deemed appropriate by the Iowa Department of Transportation’s Office of Traffic and Safety. Staff and officials from the Iowa Department of Transportation (Iowa DOT), Iowa State Patrol, Governor’s Traffic Safety Bureau, Federal Highway Administration, Center for Transportation Research and Education, and several local law enforcement and transportation agencies met to review crash data and discuss potential safety improvements to US 61. This report outlines the findings and recommendations of the road safety audit team to address the safety concerns on this US 61 corridor and explains several selected mitigation strategies.
Resumo:
On the October 7 and 8, 2008, a road safety audit was conducted for the intersection of US 61/Harrison Street and West Locust Street in Davenport, Iowa. US 61/Harrison Street is a one-way street and a principal arterial route through Davenport, with three southbound lanes. Locust Street is a four-lane, two-way minor arterial running across the city from west to east. The last major improvement at this intersection was implemented approximately 20 years ago. The Iowa Department of Transportation requested a safety audit of this intersection in response to a high incidence of crashes at the location over the past several years, in view of the fact that no major improvements are anticipated for this intersection in the immediate future. The road safety audit team discussed current conditions at the intersection and reviewed the last seven years of crash data. The team also made daytime and nighttime field visits to the intersection to examine field conditions and observe traffic flow and crossing guard operations with younger pedestrians. After discussing key issues, the road safety audit team drew conclusions and suggested possible enforcement, engineering, public information, and educational strategies for mitigation.
Resumo:
A road safety audit was conducted for a seven-mile section of County Road W-55 in Washington County, Iowa. In 2006, the average annual daily traffic on this roadway was found to be 1,290 vehicles per day. Using crash data from 2001 to 2007, the Iowa Department of Transportation (Iowa DOT) has identified this roadway as being in the top 5% of Iowa secondary rural roads with the highest density of serious (fatal and major injury) crashes for single-vehicle run-off-road incidents. Considering these safety data, the Washington County Engineer requested that a road safety audit be conducted to identify areas with safety concerns and to recommend low-cost mitigation to address those concerns. Staff and officials from the Iowa DOT, Iowa State Patrol, Governor’s Traffic Safety Bureau, Federal Highway Administration, Institute for Transportation, and local law enforcement and transportation agencies met to review crash data and discuss potential safety improvements to this segment of W-55. This report outlines the findings and recommendations of the road safety audit team to address the safety concerns on this W-55 corridor and explain several selected mitigation strategies.
Resumo:
Beginning on June 22, 2009, a road safety audit was initiated for the intersection of US 218 and County Road C-57 in Black Hawk County, Iowa. Due to the traffic volumes and the number of conflicting traffic movements on these two roadways, this intersection has developed a crash history that concerns the Iowa Department of Transportation (Iowa DOT), Iowa State Patrol, and local agencies. This intersection is ranked seventh in Iowa for the highest number of at-grade expressway intersection crashes. Considering this, Black Hawk County and the Iowa DOT requested that a road safety audit be conducted to address the safety concerns and recommend possible mitigation strategies.