55 resultados para Research performance
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This research project covered a wide range of activities that allowed researchers to understand the relationship between stability, pavement distress, and recycled portland cement concrete (RPCC) subbase aggregate materials. Detailed laboratory and field tests, including pavement distress surveys, were conducted at 26 sites in Iowa. Findings show that specific gravities of RPCC are lower than those of crushed limestone. RPCC aggregate material varies from poorly or well-graded sand to gravel. A modified Micro-Deval test procedure showed that abrasion losses of virgin aggregate materials were within the maximum Micro-Deval abrasion loss of 30% recommended by ASTM D6028-06. Micro-Deval abrasion loss of RPCC aggregate materials, however, was much higher than that of virgin materials and exceeded 30% loss. Modulus of elasticity of RPCC subbase materials is high but variable. RPCC subbase layers normally have low permeability. The pavement surfaces for both virgin and RPCC subbase across Iowa were evaluated to fulfill the objectives of this study related to field evaluation. Visual distress surveys were conducted to gather the detailed current pavement condition information including the type, extent, and severity of the pavement distresses. The historical pavement condition information for the surveyed field sections was extracted from the Iowa DOT's Pavement Management Information System (PMIS). The current surface condition of existing field pavements with RPCC subbase was compared with the virgin aggregate subbase sections using two different approaches. The changes in pavement condition indices (PCI and IRI) with time for both types of pavements (subbases) were compared.
Resumo:
The purpose of performance measures in planning operations is to identify and track meaningful, quantifiable measures that reflect progress toward the goals of the plan. The Iowa Department of Transportation (DOT) has already adopted performance measures in a number of operational areas, including highway maintenance, highway safety, public transportation, and aeronautics. This report is an initial effort to utilize performance measures for transportation system planning. The selected measures provide a cross-section of system performance indicators across three selected transportation planning goals (safety, efficiency, and quality of life) and five transportation modes (highways/bridges, public transit, railroads, aviation, and pedestrian/bicycle). These performance measures are exploratory in nature, and constitute a first attempt to apply performance measures in the context of a statewide, multimodal transportation plan from the Iowa DOT. As such, the set of performance measures that the Iowa DOT uses for planning will change over time as more is learned about the application of such measures. The performance measures explained in this document were developed through consultation with Iowa DOT modal staff (aviation, railroads, highways, public transportation, and pedestrian/bicycle) and the Office of Traffic and Safety. In addition, faculty and staff at the Iowa State University Center for Transportation Research and Education were consulted about performance measurement and data within their areas of expertise.
Resumo:
The Iowa road system has approximately 13,000 miles of Portland Cement Concrete Pavements, many of which are reaching the stage where major rehabilitation is required. Age, greater than anticipated traffic, heavier loads and deterioration related to coarse aggregate in the original pavement are some of the reasons that these pavements have reached this level of distress. One method utilized to rehabilitate distressed or underdesigned PCC pavements is the thin bonded Portland Cement Concrete overlay. Since the introduction of thin bonded overlays on highway pavements in 1973, the concrete paving industry has made progress in reducing the construction costs of this rehabilitation technique. With the advent of the shotblast machine, surface preparation costs have decreased from over $4.00 per square yard to most recently $1.42 per square yard. Other construction costs, including placement, grouting and sawing, have also declined. With each project, knowledge and efficiency have improved.
Resumo:
The Greene County, Iowa, overlay project, completed in October 1973, was evaluated in October 1978, after five years in October 1983, after ten years and most recently in October 1988 after fifteen years of service. The 33 fibrous concrete sections, four CRCP sections, two mesh reinforced and two plain concrete sections with doweled reinforcement were rated relative to each other on a scale of 0 to 100. The rating was conducted by original members of the Project Planning Committee, Iowa DOT, Iowa County, Federal Highway Administration and industry representatives. In all, there were 23, 25 and 17 representatives who rated the project in 1978, 1983 and 1988 respectively. The 23, 25 or 17 values were then averaged to provide a final rating number for each section or variable. All experimental overlay sections had performed quite well in the period from five through 15 years, experiencing only limited additional deterioration.
Resumo:
The Greene County, Iowa, overlay project, completed in October, 1973, was evaluated in October, 1978, after five years of service and most recently in October, 1983, after ten years of service. The 33 fibrous concrete sections, four CRCP sections, two mesh reinforced and two plain concrete sections with doweled reinforcement were rated relative to each other on a scale of 0 to 100. The rating was conducted by original members of the Project Planning Committee, Iowa DOT, Iowa County, Federal Highway Administration, University of Illinois and industry representatives. In all, there were 23 and 24 representatives who rated the project in 1978 and 1983 respectively. The 23 or 24 values were then averaged to provide a final rating number for each section or variable. All experimental overlay sections had performed quite well in the period from five through 10 years, experiencing only limited additional deterioration. Based upon this relatively good performance through 10 years, the sections will be maintained for further research with another evaluation at 15 years. The 4" thick nonfibrous mesh reinforced continuous reinforced concrete pavement overlay sections provided the best performance in this research project. Another nonfibrous 5" thick bar reinforced overlay section performed almost as well. The best performance of a fibrous reinforced concrete section was obtained with 160 pounds of fiber per cubic yard.
Resumo:
Fiber reinforced polymer (FRP) composite materials are making an entry into the construction market in both buildings and pavements. The application to pavements so far has come in the form of joint reinforcement (dowels and tie bars). FRP resistance to salt corrosion in dowels has made it an alternative to standard epoxy-coated steel dowels for pavements. Iowa State University has completed a large amount of laboratory research to determine the diameter, spacing, and durability of FRP dowels. This report documents the performance of elliptical FRP dowels installed in a field situation. Ten joints were monitored in three consecutive test sections, for each of three dowel spacings (10, 12, and 15 inches) including one instrumented dowel in each test section. The modulus of dowel bar support was determined using falling weight deflectometer (FWD) testing and a loaded crawl truck. FWD testing was also used to determine load transfer efficiency across the joint. The long-term performance and durability of the concrete was also evaluated by monitoring faulting and joint opening measurements and performing visual distress surveys at each joint. This report also contains similar information for standard round, medium elliptical, and heavy elliptical steel dowels in a portion of the same highway. In addition, this report provides a summary of theoretical analysis used to evaluate joint differential deflection for the dowels.
Resumo:
Standards for the construction of full-depth patching in portland cement concrete pavement usually require replacement of all deteriorated based materials with crushed stone, up to the bottom of the existing pavement layer. In an effort to reduce the time of patch construction and costs, the Iowa Department of Transportation and the Department of Civil, Construction and Environmental Engineering at Iowa State University studied the use of extra concrete depth as an option for base construction. This report compares the impact of additional concrete patching material depth on rate of strength gain, potential for early opening to traffic, patching costs, and long-term patch performance. This report also compares those characteristics in terms of early setting and standard concrete mixes. The results have the potential to change the method of Portland cement concrete pavement patch construction in Iowa.
Resumo:
Fiber composite materials (FRP) are making an entry into the construction market in both buildings and pavements. The application to pavements comes in the form of joint reinforcement (dowels and tie bars) to date. FRP resistance to salt corrosion in dowels has made it an alternative to standard epoxy coated dowels for pavements. Iowa State University has completed a large amount of laboratory research into the determination of diameter, spacing, and durability of FRP dowels. This report documents the installation of a series of FRP elliptical-shaped dowel joints (including instrumented units) in a field situation and the beginning of a two-year study to compare laboratory results to in-service pavements. Ten joints were constructed for each of three dowel spacings of 10, 12, and 15 inches ( 254, 305, and 381 mm) with one instrumented joint in each test section. The instrumented bars will be load tested with a loaded truck and FWD testing.
Resumo:
Pozzolans and slag extend the market for concrete products by improving specific properties of the products, which allows the products to be constructed with materials or placed in environments that would have precluded the use of portland cement alone. In properly formulated concrete mixes, pozzolans and slag have been shown to enhance long-term strength, decrease permeability, increase durability, reduce thermal cracking of mass concrete, minimize or eliminate cracking related to alkali-silica reaction (ASR), and minimize or eliminate cracking related to sulfate attack. The purpose of this research project was to conduct a scoping study that could be used to evaluate the need for additional research in the area of supplementary cementitious materials (SCMs) that are used in concrete for highway applications. Special emphasis was given to the concept of using two or more SCMs in a single concrete mixture. The scope of the study was limited to a literature survey and panel discussions concerning issues relevant to the project. No laboratory work was conducted for this project. A problem statement with research plan was created that could be used to guide a pooled fund project.
Resumo:
Of the approximately 25,000 bridges in Iowa, 28% are classified as structurally deficient, functionally obsolete, or both. Because many Iowa bridges require repair or replacement with a relatively limited funding base, there is a need to develop new bridge materials that may lead to longer life spans and reduced life-cycle costs. In addition, new and effective methods for determining the condition of structures are needed to identify when the useful life has expired or other maintenance is needed. Due to its unique alloy blend, high-performance steel (HPS) has been shown to have improved weldability, weathering capabilities, and fracture toughness than conventional structural steels. Since the development of HPS in the mid-1990s, numerous bridges using HPS girders have been constructed, and many have been economically built. The East 12th Street Bridge, which replaced a deteriorated box girder bridge, is Iowa’s first bridge constructed using HPS girders. The new structure is a two-span bridge that crosses I-235 in Des Moines, Iowa, providing one lane of traffic in each direction. A remote, continuous, fiber-optic based structural health monitoring (SHM) system for the bridge was developed using off-the-shelf technologies. In the system, sensors strategically located on the bridge collect raw strain data and then transfer the data via wireless communication to a gateway system at a nearby secure facility. The data are integrated and converted to text files before being uploaded automatically to a website that provides live strain data and a live video stream. A data storage/processing system at the Bridge Engineering Center in Ames, Iowa, permanently stores and processes the data files. Several processes are performed to check the overall system’s operation, eliminate temperature effects from the complete strain record, compute the global behavior of the bridge, and count strain cycles at the various sensor locations.
Resumo:
The Iowa Department of Corrections faces a growing prison population expected to quickly exceed current capacities. Additionally, nine out of every ten offenders have a history of alcohol or drug problems often both. Research suggests that alcohol and drugs lead to criminal behavior, which lead offenders right back to prison creating a vicious circle and placing a financial and societal burden on the state. However, research also shows that substance abuse treatment can minimize criminal behavior, and offers a way to shut the revolving prison door. Substance abuse programming attempts to change offender thinking patterns and behavior in order to facilitate re-entry back into the community, lessen substance abuse relapse and reduce recidivism. Yet nearly 60% of offenders with identified needs are not treated, and many lacking treatment are high risk. Additionally, the percentage of offenders returning to prison varies significantly from program to program and some programs can not show they have reduced recidivism when compared to offender groups with substance abuse problems and receiving no treatment at all. All of which minimize the effect substance Abuse programming has in curbing prison population growth and reducing crime.
Resumo:
The Iowa Method for bridge deck overlays has been very successful in Iowa since its adoption in the 1970s. This method involves removal of deteriorated portions of a bridge deck followed by placement of a layer of den (Type O) Portland Cement Concrete (PCC). The challenge encountered with this type of bridge deck overlay is that the PCC must be mixed on-site, brought to the placement area and placed with specialized equipment. This adds considerably to the cost and limits contractor selection. A previous study (TR-427) showed that a dense PCC with high-range water reducers could successfully be used for bridge deck overlays using conventional equipment and methods. This current study evaluated the use of high performance PCC in place of a dense PCC for work on county bridges. High performance PCC uses fly ash and slag to replace some of the cement in the mix. This results in a workable PCC mix that cures to form a very low permeability overlay.
Design and Evaluation of a Single-Span Bridge Using Ultra- High Performance Concrete, September 2009
Resumo:
Research presented herein describes an application of a newly developed material called Ultra-High Performance Concrete (UHPC) to a single-span bridge. The two primary objectives of this research were to develop a shear design procedure for possible code adoption and to provide a performance evaluation to ensure the viability of the first UHPC bridge in the United States. Two other secondary objectives included defining of material properties and understanding of flexural behavior of a UHPC bridge girder. In order to obtain information in these areas, several tests were carried out including material testing, large-scale laboratory flexure testing, large-scale laboratory shear testing, large-scale laboratory flexure-shear testing, small-scale laboratory shear testing, and field testing of a UHPC bridge. Experimental and analytical results of the described tests are presented. Analytical models to understand the flexure and shear behavior of UHPC members were developed using iterative computer based procedures. Previous research is referenced explaining a simplified flexural design procedure and a simplified pure shear design procedure. This work describes a shear design procedure based on the Modified Compression Field Theory (MCFT) which can be used in the design of UHPC members. Conclusions are provided regarding the viability of the UHPC bridge and recommendations are made for future research.
Resumo:
The purpose of this guide is to help practitioners understand how to optimize concrete pavement joint performance through the identification, mitigation, and prevention of joint deterioration. It summarizes current knowledge from research and practice to help practitioners access the latest knowledge and implement proven techniques. Emphasizing that water is the common factor in most premature joint deterioration, this guide describes various types of joint deterioration that can occur. Some distresses are caused by improper joint detailing or construction, and others can be attributed to inadequate materials or proportioning. D cracking is a form of joint distress that results from the use of poor-quality aggregates. A particular focus in this guide is joint distress due to freeze-thaw action. Numerous factors are at play in the occurrence of this distress, including the increased use of a variety of deicing chemicals and application strategies. Finally, this guide provides recommendations for minimizing the potential for joint deterioration, along with recommendations for mitigation practices to slow or stop the progress of joint deterioration.
Resumo:
Pavement marking technology is a continually evolving subject. There are numerous types of materials used in the field today, including (but not limited to) paint, epoxy, tape, and thermoplastic. Each material has its own set of unique characteristics related to durability, retro reflectivity, installation cost, and life-cycle cost. The Iowa Highway Research Board was interested in investigating the possibility of developing an ongoing program to evaluate the various products used in pavement marking. This potential program would maintain a database of performance and cost information to assist state and local agencies in determining which materials and placement methods are most appropriate for their use. The Center for Transportation Research and Education at Iowa State University has completed Phase I of this research: to identify the current practice and experiences from around the United States to recommend a further course of action for the State of Iowa. There has been a significant amount of research completed in the last several years. Research from Michigan, Pennsylvania, South Dakota, Ohio, and Alaska all had some common findings: white markings are more retro reflective than yellow markings; paint is by-and-large the least expensive material; paint tends to degrade faster than other materials; thermoplastic and tapes had higher retro reflective characteristics. Perhaps the most significant program going on in the area of pavement markings is the National Transportation Product Evaluation Program (NTPEP). This is an ongoing research program jointly conducted by the American Association of State Highway and Transportation Officials and its member states. Field and lab tests on numerous types of pavement marking materials are being conducted at sites representing four climatological areas. These results are published periodically for use by any jurisdiction interested in pavement marking materials performance.At this time, it is recommended that the State of Iowa not embark on a test deck evaluation program. Instead, close attention should be paid to the ongoing evaluations of the NTPEP program. Materials that fare well on the NTPEP test de cks should be considered for further field studies in Iowa.