15 resultados para Reliable change
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
A one page informational sheet about skin cancer and the hat you wear. Sun Safety
Resumo:
On April 27, 2007, Iowa Governor Chet Culver signed Senate File 485, a bill related to greenhouse gas emissions. Part of this bill created the Iowa Climate Change Advisory Council (ICCAC), which consists of 23 governor-appointed members from various stakeholder groups, and 4 nonvoting, ex officio members from the General Assembly. ICCAC’s immediate responsibilities included submitting a proposal to the Governor and General Assembly that addresses policies, cost-effective strategies, and multiple scenarios designed to reduce statewide greenhouse gas emissions. Further, a preliminary report was submitted in January 2008, with a final proposal submitted in December 2008. In the Final Report, the Council presents two scenarios designed to reduce statewide greenhouse gas emissions by 50% and 90% from a 2005 baseline by the year 2050. For the 50% reduction by 2050, the Council recommends approximately a 1% reduction by 2012 and an 11% reduction by 2020. For the 90% reduction scenario, the Council recommends a 3% reduction by 2012 and a 22% reduction 2020. These interim targets were based on a simple extrapolation assuming a linear rate of reduction between now and 2050. In providing these scenarios for your consideration, ICCAC approved 56 policy options from a large number of possibilities. There are more than enough options to reach the interim and final emission targets in both the 50% and 90% reduction scenarios. Direct costs and cost savings of these policy options were also evaluated with the help of The Center for Climate Strategies, who facilitated the process and provided technical assistance throughout the entire process, and who developed the Iowa Greenhouse Gas Emissions Inventory and Forecast in close consultation with the Iowa Department of Natural Resources (IDNR) and many Council and Sub-Committee members. About half of the policy options presented in this report will not only reduce GHG emissions but are highly cost-effective and will save Iowans money. Still other options may require significant investment but will create jobs, stimulate energy independence, and advance future regional or federal GHG programs.
Resumo:
Past studies have shown the LSI-R risk assessment tool to be accurate in assessing the risk level of Iowa offenders. A more recent study, conducted by the University of Cincinnati, showed that a reduction in the LSI-R score over time results in a lower risk that an Iowa offender will reoffend.
Resumo:
In the last issue of the Data Download, we discussed that overall, a 10% drop in LSI-R scores for our highest risk offenders was associated with a 6% reduction in recidivism. However, LSI-R score reductions for the lowest risk offenders don't substantially affect their already low recidivism rates. The issue contained charts that showed this held true for both probationers and parolees. The charts below show that change also matters for women offenders and African-American offenders.
Resumo:
In this issue, we take a closer look at the individual risk factors measured by the LSI-R. There are several risk factors that the LSI-R assessment tool measures: Criminal History; Education/Employment; Financial; Family/Marital; Accommodations (Living Situation); Leisure/Recreation; Companions; Alcohol/Drug Problem; Emotional/Personal; and Attitudes/Orientation.
Resumo:
Today, perhaps without their realization, Iowans are factoring climate change into their lives and activities. Current farming practices and flood mitigation efforts, for example, are reflecting warmer winters, longer growing seasons, warmer nights, higher dew-point temperatures, increased humidity, greater annual stream flows, and more frequent severe precipitation events (Fig. 1) than were prevalent during the past 50 years. Some of the effects of these changes (such as longer growing season) may be positive, while others (particularly the tendency for greater precipitation events that lead to flooding) are negative. Climate change embodies all of these results and many more in a complex manner. The Iowa legislature has been proactive in seeking advice about climate change and its impacts on our state. In 2007, Governor Culver and the Iowa General Assembly enacted Senate File 485 and House File 2571 to create the Iowa Climate Change Advisory Council (ICCAC). ICCAC members reported an emissions inventory and a forecast for Iowa’s greenhouse gases (GHGs), policy options for reducing Iowa’s GHG, and two scenarios charting GHG reductions of 50% and 90% by 2050 from a baseline of 2005. Following issuance of the final report in December 2008, the General Assembly enacted a new bill in 2009 (Sec. 27, Section 473.7, Code 2009 amended) that set in motion a review of climate change impacts and policies in Iowa. This report is the result of that 2009 bill. It continues the dialogue between Iowa’s stakeholders, scientific community, and the state legislature that was begun with these earlier reports.
Resumo:
Traumatic Brain Injury (TBI) impacts the lives of thousands of Iowans every year. TBI has been described as the “Silent Epidemic” because so often the scars are not visible to others. The affects of brain injury are cognitive, emotional, social, and can result in physical disability. In addition to the overwhelming challenges individuals with brain injury experience, families also face many difficulties in dealing with their loved one’s injury, and in navigating a service delivery system that can be confusing and frustrating. In 1998, the Iowa Department of Public Health (IDPH) conducted a comprehensive statewide needs assessment of brain injury in Iowa. This assessment led to the development of the first Iowa Plan for Brain Injury, “Coming Into Focus.” An updated state plan, the Iowa Plan for Brain Injuries 2002 – 2005, was developed, which reported on progress of the previous state plan, and outlined gaps in service delivery in Iowa. Four areas of focus were identified by the State Plan for Brain Injuries Task Force that included: 1) Expanding the Iowa Brain Injury Resource Network (IBIRN); 2) Promoting a Legislative and Policy Agenda, While Increasing Legislative Strength; 3) Enhancing Data Collection; and, 4) Increasing Funding. The IDPH utilized “Coming Into Focus” as the framework for an application to the federal TBI State Grant Program, which has resulted in more than $900,000 for plan implementation. Iowa continues to receive grant dollars through the TBI State Grant Program, which focuses on increasing capacity to serve Iowans with brain injury and their families. Highlighting the success of this grant project, in 2007 the IDPH received the federal TBI Program’s “Impacting Systems Change” Award. The Iowa Brain Injury Resource Network (IBIRN) is the product of nine years of TBI State Grant Program funding. The IBIRN was developed to ensure that Iowans got the information and support they needed after a loved one sustained a TBI. It consists of a hospital and service provider pre-discharge information and service linkage process, a resource facilitation program, a peer-to-peer volunteer support network, and a service provider training and technical assistance program. Currently over 90 public and private partners work with the IDPH and the Brain Injury Association of Iowa (BIA-IA) to administer the IBIRN system and ensure that families have a relevant and reliable location to turn for information and support. Further success was accomplished in 2006 when the Iowa legislature created the Brain Injury Services Program within the IDPH. This program consists of four components focusing on increasing access to services and improving the effectiveness of services available to individuals with TBI and their families, including: 1) HCBS Brain Injury Waiver-Eligible Component; 2) Cost Share Component; 3) Neuro-Resource Facilitation; and, 4) Enhanced Training. The Iowa legislature appropriated $2.4 million to the Brain Injury Services Program in state fiscal year (SFY) 2007, and increased that amount to $3.9 million in SFY 2008. The Cost Share Component models the HCBS Brain Injury Waiver menu of services but is available for Iowans who do not qualify functionally or financially for the Waiver. In addition, the Neuro-Resource Facilitation program links individuals with brain injury and their families to needed supports and services. The Iowa Plan for Brain Injury highlights the continued need for serving individuals with brain injury and their families. Additionally, the Plan outlines the paths of prevention and services, which will expand the current system and direct efforts into the future.
Resumo:
Blowing and drifting of snow is a major concern for transportation efficiency and road safety in regions where their development is common. One common way to mitigate snow drift on roadways is to install plastic snow fences. Correct design of snow fences is critical for road safety and maintaining the roads open during winter in the US Midwest and other states affected by large snow events during the winter season and to maintain costs related to accumulation of snow on the roads and repair of roads to minimum levels. Of critical importance for road safety is the protection against snow drifting in regions with narrow rights of way, where standard fences cannot be deployed at the recommended distance from the road. Designing snow fences requires sound engineering judgment and a thorough evaluation of the potential for snow blowing and drifting at the construction site. The evaluation includes site-specific design parameters typically obtained with semi-empirical relations characterizing the local transport conditions. Among the critical parameters involved in fence design and assessment of their post-construction efficiency is the quantification of the snow accumulation at fence sites. The present study proposes a joint experimental and numerical approach to monitor snow deposits around snow fences, quantitatively estimate snow deposits in the field, asses the efficiency and improve the design of snow fences. Snow deposit profiles were mapped using GPS based real-time kinematic surveys (RTK) conducted at the monitored field site during and after snow storms. The monitored site allowed testing different snow fence designs under close to identical conditions over four winter seasons. The study also discusses the detailed monitoring system and analysis of weather forecast and meteorological conditions at the monitored sites. A main goal of the present study was to assess the performance of lightweight plastic snow fences with a lower porosity than the typical 50% porosity used in standard designs of such fences. The field data collected during the first winter was used to identify the best design for snow fences with a porosity of 50%. Flow fields obtained from numerical simulations showed that the fence design that worked the best during the first winter induced the formation of an elongated area of small velocity magnitude close to the ground. This information was used to identify other candidates for optimum design of fences with a lower porosity. Two of the designs with a fence porosity of 30% that were found to perform well based on results of numerical simulations were tested in the field during the second winter along with the best performing design for fences with a porosity of 50%. Field data showed that the length of the snow deposit away from the fence was reduced by about 30% for the two proposed lower-porosity (30%) fence designs compared to the best design identified for fences with a porosity of 50%. Moreover, one of the lower-porosity designs tested in the field showed no significant snow deposition within the bottom gap region beneath the fence. Thus, a major outcome of this study is to recommend using plastic snow fences with a porosity of 30%. It is expected that this lower-porosity design will continue to work well for even more severe snow events or for successive snow events occurring during the same winter. The approach advocated in the present study allowed making general recommendations for optimizing the design of lower-porosity plastic snow fences. This approach can be extended to improve the design of other types of snow fences. Some preliminary work for living snow fences is also discussed. Another major contribution of this study is to propose, develop protocols and test a novel technique based on close range photogrammetry (CRP) to quantify the snow deposits trapped snow fences. As image data can be acquired continuously, the time evolution of the volume of snow retained by a snow fence during a storm or during a whole winter season can, in principle, be obtained. Moreover, CRP is a non-intrusive method that eliminates the need to perform man-made measurements during the storms, which are difficult and sometimes dangerous to perform. Presently, there is lots of empiricism in the design of snow fences due to lack of data on fence storage capacity on how snow deposits change with the fence design and snow storm characteristics and in the estimation of the main parameters used by the state DOTs to design snow fences at a given site. The availability of such information from CRP measurements should provide critical data for the evaluation of the performance of a certain snow fence design that is tested by the IDOT. As part of the present study, the novel CRP method is tested at several sites. The present study also discusses some attempts and preliminary work to determine the snow relocation coefficient which is one of the main variables that has to be estimated by IDOT engineers when using the standard snow fence design software (Snow Drift Profiler, Tabler, 2006). Our analysis showed that standard empirical formulas did not produce reasonable values when applied at the Iowa test sites monitored as part of the present study and that simple methods to estimate this variable are not reliable. The present study makes recommendations for the development of a new methodology based on Large Scale Particle Image Velocimetry that can directly measure the snow drift fluxes and the amount of snow relocated by the fence.
Resumo:
An examination of the historical revenues for Regents universities' general education budgets considering enrollment changes and inflation.
Resumo:
The Iowa Department of Transportation (DOT) is responsible for approximately 4,100 bridges and structures that are a part of the state’s primary highway system, which includes the Interstate, US, and Iowa highway routes. A pilot study was conducted for six bridges in two Iowa river basins—the Cedar River Basin and the South Skunk River Basin—to develop a methodology to evaluate their vulnerability to climate change and extreme weather. The six bridges had been either closed or severely stressed by record streamflow within the past seven years. An innovative methodology was developed to generate streamflow scenarios given climate change projections. The methodology selected appropriate rainfall projection data to feed into a streamflow model that generated continuous peak annual streamflow series for 1960 through 2100, which were used as input to PeakFQ to estimate return intervals for floods. The methodology evaluated the plausibility of rainfall projections and credibility of streamflow simulation while remaining consistent with U.S. Geological Survey (USGS) protocol for estimating the return interval for floods. The results were conveyed in an innovative graph that combined historical and scenario-based design metrics for use in bridge vulnerability analysis and engineering design. The pilot results determined the annual peak streamflow response to climate change likely will be basin-size dependent, four of the six pilot study bridges would be exposed to increased frequency of extreme streamflow and would have higher frequency of overtopping, the proposed design for replacing the Interstate 35 bridges over the South Skunk River south of Ames, Iowa is resilient to climate change, and some Iowa DOT bridge design policies could be reviewed to consider incorporating climate change information.
Resumo:
Portland cement concrete is an outstanding structural material but stresses and cracks often occur in large structures due to drying shrinkage. The objective of this research was to determine the change in length due to loss of moisture from placement through complete drying of portland cement concrete. The drying shrinkage was determined for four different combinations of Iowa DOT structural concrete mix proportions and materials. The two mix proportions used were an Iowa DOT D57 (bridge deck mix proportions) and a water reduced modified C4 mix. Three 4"x 4"x 18" beams were made for each mix. After moist curing for three days, all beams were maintained in laboratory dry air and the length and weight were measured at 73°F ± 3°F. The temperature was cycled on alternate days from 73°F to 90°F through four months. From four months through six months, the temperature was cycled one day at 73°F and six days at 130°F. It took approximately six months for the concrete to reach a dry condition with these temperatures. The total drying shrinkage for the four mixes varied from .0106 in. to .0133 in. with an average of .0120 in. The rate of shrinkage was approximately .014% shrinkage per 1% moisture loss for all four mixes. The rate and total shrinkage for all four mixes was very similar and did not seem to depend on the type of coarse aggregate or the use of a retarder.
Resumo:
Two portable Radio Frequency IDentification (RFID) systems (made by Texas Instruments and HiTAG) were developed and tested for bridge scour monitoring by the Department of Civil and Environmental Engineering at the University of Iowa (UI). Both systems consist of three similar components: 1) a passive cylindrical transponder of 2.2 cm in length (derived from transmitter/responder); 2) a low frequency reader (~134.2 kHz frequency); and 3) an antenna (of rectangular or hexagonal loop). The Texas Instruments system can only read one smart particle per time, while the HiTAG system was successfully modified here at UI by adding the anti-collision feature. The HiTAG system was equipped with four antennas and could simultaneously detect 1,000s of smart particles located in a close proximity. A computer code was written in C++ at the UI for the HiTAG system to allow simultaneous, multiple readouts of smart particles under different flow conditions. The code is written for the Windows XP operational system which has a user-friendly windows interface that provides detailed information regarding the smart particle that includes: identification number, location (orientation in x,y,z), and the instance the particle was detected.. These systems were examined within the context of this innovative research in order to identify the best suited RFID system for performing autonomous bridge scour monitoring. A comprehensive laboratory study that included 142 experimental runs and limited field testing was performed to test the code and determine the performance of each system in terms of transponder orientation, transponder housing material, maximum antenna-transponder detection distance, minimum inter-particle distance and antenna sweep angle. The two RFID systems capabilities to predict scour depth were also examined using pier models. The findings can be summarized as follows: 1) The first system (Texas Instruments) read one smart particle per time, and its effective read range was about 3ft (~1m). The second system (HiTAG) had similar detection ranges but permitted the addition of an anti-collision system to facilitate the simultaneous identification of multiple smart particles (transponders placed into marbles). Therefore, it was sought that the HiTAG system, with the anti-collision feature (or a system with similar features), would be preferable when compared to a single-read-out system for bridge scour monitoring, as the former could provide repetitive readings at multiple locations, which could help in predicting the scour-hole bathymetry along with maximum scour depth. 2) The HiTAG system provided reliable measures of the scour depth (z-direction) and the locations of the smart particles on the x-y plane within a distance of about 3ft (~1m) from the 4 antennas. A Multiplexer HTM4-I allowed the simultaneous use of four antennas for the HiTAG system. The four Hexagonal Loop antennas permitted the complete identification of the smart particles in an x, y, z orthogonal system as function of time. The HiTAG system can be also used to measure the rate of sediment movement (in kg/s or tones/hr). 3) The maximum detection distance of the antenna did not change significantly for the buried particles compared to the particles tested in the air. Thus, the low frequency RFID systems (~134.2 kHz) are appropriate for monitoring bridge scour because their waves can penetrate water and sand bodies without significant loss of their signal strength. 4) The pier model experiments in a flume with first RFID system showed that the system was able to successfully predict the maximum scour depth when the system was used with a single particle in the vicinity of pier model where scour-hole was expected. The pier model experiments with the second RFID system, performed in a sandbox, showed that system was able to successfully predict the maximum scour depth when two scour balls were used in the vicinity of the pier model where scour-hole was developed. 5) The preliminary field experiments with the second RFID system, at the Raccoon River, IA near the Railroad Bridge (located upstream of 360th street Bridge, near Booneville), showed that the RFID technology is transferable to the field. A practical method would be developed for facilitating the placement of the smart particles within the river bed. This method needs to be straightforward for the Department of Transportation (DOT) and county road working crews so it can be easily implemented at different locations. 6) Since the inception of this project, further research showed that there is significant progress in RFID technology. This includes the availability of waterproof RFID systems with passive or active transponders of detection ranges up to 60 ft (~20 m) within the water–sediment column. These systems do have anti-collision and can facilitate up to 8 powerful antennas which can significantly increase the detection range. Such systems need to be further considered and modified for performing automatic bridge scour monitoring. The knowledge gained from the two systems, including the software, needs to be adapted to the new systems.
Resumo:
Lake Icaria is a 660 acre man-made lake in rural Adams County. Lake Icaria is a popular recreational attraction providing ample fishing, boating, and swimming opportunities. Constructed in 1977 for water supply, Lake lcaria continues to provide reliable drinking water to 1,900 households in Adams and Montgomery counties. No stranger to the water quality world, Lake Icaria was the primary lake in the 3Lakes Water Quality Project(1996-2004), an eight year water quality effort which came to be known as one oflowa's first great water quality successes. At time of construction the Lake Icaria watershed was primarily grass. A shift towards maximizing crop production in the 1980's brought about the end of dairy farms and a concern for sediment loss and how that would affect water quality. This change in land use set the stage for the first water quality project at Lake Icaria. Since the conclusion of the 3Lakes Water Quality Project in 2004land use in the watershed has made yet another monumental shift towards crop production. Nearly 2,000 acres ofland that was once in the conservation reserve program is now being planted to a crop. This change in land use has once again brought about serious concerns for the quality of water being provided by Lake Icaria.
Resumo:
The Federal Highway Administration mandates that states collect traffic count information at specified intervals to meet the needs of the Highway Performance Monitoring System (HPMS). A manual land use change detection method was employed to determine the effects of land use change on traffic for Black Hawk County, Iowa, from 1994 to 2002. Results from land use change detection could enable redirecting traffic count activities and related data management resources to areas that are experiencing the greatest changes in land use and related traffic volume. Including a manual land use change detection process in the Iowa Department of Transportation’s traffic count program has the potential to improve efficiency by focusing monitoring activities in areas more likely to experience significant increase in traffic.
Resumo:
The Center for Transportation Research and Education (CTRE) issued a report in July 2003, based on a sample study of the application of remote sensed image land use change detection to the methodology of traffic monitoring in Blackhawk County, Iowa. In summary, the results indicated a strong correlation and a statistically significant regression coefficient between the identification of built-up land use change areas from remote sensed data and corresponding changes in traffic patterns, expressed as vehicle miles traveled (VMT). Based on these results, the Iowa Department of Transportation (Iowa DOT) requested that CTRE expand the study area to five counties in the southwest quadrant of the state. These counties are scheduled for traffic counts in 2004, and the Iowa DOT desired the data to 1) evaluate the current methodology used to place the devices; 2) potentially influence the placement of traffic counting devices in areas of high built-up land use change; and 3) determine if opportunities exist to reduce the frequency and/or density of monitoring activity in lower trafficked rural areas of the state. This project is focused on the practical application of built-up land use change data for placement of traffic count data recording devices in five southwest Iowa counties.