16 resultados para Radar antennas

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this research was to summarize existing nondestructive test methods that have the potential to be used to detect materials-related distress (MRD) in concrete pavements. The various nondestructive test methods were then subjected to selection criteria that helped to reduce the size of the list so that specific techniques could be investigated in more detail. The main test methods that were determined to be applicable to this study included two stress-wave propagation techniques (impact-echo and spectral analysis of surface waves techniques), infrared thermography, ground penetrating radar (GPR), and visual inspection. The GPR technique was selected for a preliminary round of “proof of concept” trials. GPR surveys were carried out over a variety of portland cement concrete pavements for this study using two different systems. One of the systems was a state-of-the-art GPR system that allowed data to be collected at highway speeds. The other system was a less sophisticated system that was commercially available. Surveys conducted with both sets of equipment have produced test results capable of identifying subsurface distress in two of the three sites that exhibited internal cracking due to MRD. Both systems failed to detect distress in a single pavement that exhibited extensive cracking. Both systems correctly indicated that the control pavement exhibited negligible evidence of distress. The initial positive results presented here indicate that a more thorough study (incorporating refinements to the system, data collection, and analysis) is needed. Improvements in the results will be dependent upon defining the optimum number and arrangement of GPR antennas to detect the most common problems in Iowa pavements. In addition, refining highfrequency antenna response characteristics will be a crucial step toward providing an optimum GPR system for detecting materialsrelated distress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When concrete deterioration begins to occur in highway pavement, repairs become necessary to assure the rider safety, extend its useful life and restore its riding qualities. One rehabilitation technique used to restore the pavement to acceptable highway standards is to apply a thin portland cement concrete (PCC) overlay to the existing pavement. First, any necessary repairs are made to the existing pavement, the surface is then prepared, and the PCC overlay is applied. Brice Petrides-Donohue, Inc. (Donohue) was retained by the Iowa Department of Transportation (IDOT) to evaluate the present condition with respect to debonding of the PCC overlay at fifteen sites on Interstate 80 and State Highway 141 throughout the State of Iowa. This was accomplished by conducting an infrared thermographic and ground penetrating radar survey of these sites which were selected by the Iowa Department of Transportation. The fifteen selected sites were all two lanes wide and one-tenth of a mile long, for a total of three lane miles or 190,080 square feet. The selected sites are as follows: On Interstate 80 Eastbound, from milepost 35.25 to 35.35, milepost 36.00 to 36.10, milepost 37.00 to 37.10, milepost 38.00 to 38.10 and milepost 39.00 to 39.10, on State Highway 141 from milepost 134.00 to 134.10, milepost 134.90 to milepost 135.00, milepost 135.90 to 136.00, milepost 137.00 to 137.10 and milepost 138.00 to 138.10, and on Interstate 80 Westbound from milepost 184.00 to 184.10, milepost 185.00 to 185.10, milepost 186.00 to 186.10, milepost 187.00 to 187.10, and from milepost 188.00 to 188.10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project utilized information from ground penetrating radar (GPR) and visual inspection via the pavement profile scanner (PPS) in proof-of-concept trials. GPR tests were carried out on a variety of portland cement concrete pavements and laboratory concrete specimens. Results indicated that the higher frequency GPR antennas were capable of detecting subsurface distress in two of the three pavement sites investigated. However, the GPR systems failed to detect distress in one pavement site that exhibited extensive cracking. Laboratory experiments indicated that moisture conditions in the cracked pavement probably explain the failure. Accurate surveys need to account for moisture in the pavement slab. Importantly, however, once the pavement site exhibits severe surface cracking, there is little need for GPR, which is primarily used to detect distress that is not observed visually. Two visual inspections were also conducted for this study by personnel from Mandli Communications, Inc., and the Iowa Department of Transportation (DOT). The surveys were conducted using an Iowa DOT video log van that Mandli had fitted with additional equipment. The first survey was an extended demonstration of the PPS system. The second survey utilized the PPS with a downward imaging system that provided high-resolution pavement images. Experimental difficulties occurred during both studies; however, enough information was extracted to consider both surveys successful in identifying pavement surface distress. The results obtained from both GPR testing and visual inspections were helpful in identifying sites that exhibited materials-related distress, and both were considered to have passed the proof-of-concept trials. However, neither method can currently diagnose materials-related distress. Both techniques only detected the symptoms of materials-related distress; the actual diagnosis still relied on coring and subsequent petrographic examination. Both technologies are currently in rapid development, and the limitations may be overcome as the technologies advance and mature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this project was to evaluate the location and quantities of debonding in selected portland cement concrete (PCC) overlays. The project entailed an infrared thermographic survey and a ground penetrating radar survey of the PCC overlays to locate areas of debonding between the overlays and the original pavement. An infrared scanner is capable of locating these areas because of the temperature differential which is established between bonded and debonded areas under certain environmental conditions. A conventional video inspection of the top surface of the pavement was also completed in conjunction with the infrared thermographic survey to record the visual condition of the pavement surface. The ground penetrating radar system is capable of locating areas of debonding by detecting return wave forms generated by changes in the dielectric properties at the PCC overlay original pavement interface. This report consists of two parts; a text and a set of plan sheets. The text summarizes the procedures, analyses and conclusions of the investigation. The plan sheets locate specific areas of debonding, as identified through field observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current monitoring techniques for determination of compaction of earthwork and asphalt generally involve destructive testing of the materials following placement. Advances in sensor technologies show significant promise for obtaining necessary information through nondestructive and remote techniques. To develop a better understanding of suitable and potential technologies, this study was undertaken to conduct a synthesis review of nondestructive testing technologies and perform preliminary evaluations of selected technologies to better understand their application to testing of geomaterials (soil fill, aggregate base, asphalt, etc.). This research resulted in a synthesis of potential technologies for compaction monitoring with a strong emphasis on moisture sensing. Techniques were reviewed and selectively evaluated for their potential to improve field quality control operations. Activities included an extensive review of commercially available moisture sensors, literature review, and evaluation of selected technologies. The technologies investigated in this study were dielectric, nuclear, near infrared spectroscopy, seismic, electromagnetic induction, and thermal. The primary disadvantage of all the methods is the small sample volume measured. In addition, all the methods possessed some sensitivity to non-moisture factors that affected the accuracy of the results. As the measurement volume increases, local variances are averaged out providing better accuracy. Most dielectric methods with the exception of ground penetrating radar have a very small measurement volume and are highly sensitive to variations in density, porosity, etc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this project was to promote and facilitate analysis and evaluation of the impacts of road construction activities in Smart Work Zone Deployment Initiative (SWZDI) states. The two primary objectives of this project were to assess urban freeway work-zone impacts through use of remote monitoring devices, such as radar-based traffic sensors, traffic cameras, and traffic signal loop detectors, and evaluate the effectiveness of using these devices for such a purpose. Two high-volume suburban freeway work zones, located on Interstate 35/80 (I-35/I-80) through the Des Moines, Iowa metropolitan area, were evaluated at the request of the Iowa Department of Transportation (DOT).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary objective of this research was to demonstrate the benefits of NDT technologies for effectively detecting and characterizing deterioration in bridge decks. In particular, the objectives were to demonstrate the capabilities of ground-penetrating radar (GPR) and impact echo (IE), and to evaluate and describe the condition of nine bridge decks proposed by Iowa DOT. The first part of the report provides a detailed review of the most important deterioration processes in concrete decks, followed by a discussion of the five NDT technologies utilized in this project. In addition to GPR and IE methods, three other technologies were utilized, namely: half-cell (HC) potential, electrical resistivity (ER), and ultrasonic surface waves (USW) method. The review includes a description of the principles of operation, field implementation, data analysis, and interpretation; information regarding their advantages and limitations in bridge deck evaluations and condition monitoring are also implicitly provided.. The second part of the report provides descriptions and bridge deck evaluation results from the nine bridges. The results of the NDT surveys are described in terms of condition assessment maps and are compared with the observations obtained from the recovered cores or conducted bridge deck rehabilitation. Results from this study confirm that the used technologies can provide detailed and accurate information about a certain type of deterioration, electrochemical environment, or defect. However, they also show that a comprehensive condition assessment of bridge decks can be achieved only through a complementary use of multiple technologies at this stage,. Recommendations are provided for the optimum implementation of NDT technologies for the condition assessment and monitoring of bridge decks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary goal of this project is to demonstrate the accuracy and utility of a freezing drizzle algorithm that can be implemented on roadway environmental sensing systems (ESSs). The types of problems related to the occurrence of freezing precipitation range from simple traffic delays to major accidents that involve fatalities. Freezing drizzle can also lead to economic impacts in communities with lost work hours, vehicular damage, and downed power lines. There are means for transportation agencies to perform preventive and reactive treatments to roadways, but freezing drizzle can be difficult to forecast accurately or even detect as weather radar and surface observation networks poorly observe these conditions. The detection of freezing precipitation is problematic and requires special instrumentation and analysis. The Federal Aviation Administration (FAA) development of aircraft anti-icing and deicing technologies has led to the development of a freezing drizzle algorithm that utilizes air temperature data and a specialized sensor capable of detecting ice accretion. However, at present, roadway ESSs are not capable of reporting freezing drizzle. This study investigates the use of the methods developed for the FAA and the National Weather Service (NWS) within a roadway environment to detect the occurrence of freezing drizzle using a combination of icing detection equipment and available ESS sensors. The work performed in this study incorporated the algorithm developed initially and further modified for work with the FAA for aircraft icing. The freezing drizzle algorithm developed for the FAA was applied using data from standard roadway ESSs. The work performed in this study lays the foundation for addressing the central question of interest to winter maintenance professionals as to whether it is possible to use roadside freezing precipitation detection (e.g., icing detection) sensors to determine the occurrence of pavement icing during freezing precipitation events and the rates at which this occurs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main goal of the research described in this report was to evaluate countermeasures that agencies can use to reduce speeds as drivers enter rural communities located on high-speed roadways. The objectives of this study were as follows: * Identify and summarize countermeasures used to manage speeds in transition zones * Demonstrate the effectiveness of countermeasures that are practical for high- to low-speed transition zones * Acquire additional information about countermeasures that may show promise but lack sufficient evidence of effectiveness * Develop an application toolbox to assist small communities in selecting appropriate transition zones and effective countermeasures for entrances to small rural communities The team solicited small communities that were interested in participating in the Phase II study and several communities were also recommended. The treatments evaluated were selected by carefully considering traffic-calming treatments that have been used effectively in other countries for small rural communities, as well as the information gained from the first phase of the project. The treatments evaluated are as follows: * Transverse speed bars * Colored entrance treatment * Temporary island * Radar-activated speed limit sign * Speed feedback sign The toolbox publication and four focused tech briefs also cover the results of this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Technical challenges exist with infrastructure that can be addressed by nondestructive evaluation (NDE) methods, such as detecting corrosion damage to reinforcing steel that anchor concrete bridge railings to bridge road decks. Moisture and chloride ions reach the anchors along the cold joint between the rails and deck, causing corrosion that weakens the anchors and ultimately the barriers. The Center for Nondestructive Evaluation at Iowa State University has experience in development of measurement techniques and new sensors using a variety of interrogating energies. This research evaluated feasibility of three technologies — x-ray radiation, ground-penetrating radar (GPR), and magnetic flux leakage (MFL) — for detection and quantification of corrosion of embedded reinforcing steel. Controlled samples containing pristine reinforcing steel with and without epoxy and reinforcing steel with 25 percent and 50 percent section reduction were embedded in concrete at 2.5 in. deep for laboratory evaluation. Two of the techniques, GPR and MFL, were used in a limited field test on the Iowa Highway 210 Bridge over Interstate 35 in Story County. The methods provide useful and complementary information. GPR provides a rapid approach to identify reinforcing steel that has anomalous responses. MFL provides similar detection responses but could be optimized to provide more quantitative correlation to actual condition. Full implementation could use either GPR or MFL methods to identify areas of concern, followed by radiography to give a visual image of the actual condition, providing the final guidance for maintenance actions." The full 103 page report and the 2 page Tech Transfer Summary are included in this link.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 2011 Missouri River flooding caused significant damage to many geo-infrastructure systems including levees, bridge abutments/foundations, paved and unpaved roadways, culverts, and embankment slopes in western Iowa. The flooding resulted in closures of several interchanges along Interstate 29 and of more than 100 miles of secondary roads in western Iowa, causing severe inconvenience to residents and losses to local businesses. The main goals of this research project were to assist county and city engineers by deploying and using advanced technologies to rapidly assess the damage to geo-infrastructure and develop effective repair and mitigation strategies and solutions for use during future flood events in Iowa. The research team visited selected sites in western Iowa to conduct field reconnaissance, in situ testing on bridge abutment backfills that were affected by floods, flooded and non-flooded secondary roadways, and culverts. In situ testing was conducted shortly after the flood waters receded, and several months after flooding to evaluate recovery and performance. Tests included falling weight deflectometer, dynamic cone penetrometer, three-dimensional (3D) laser scanning, ground penetrating radar, and hand auger soil sampling. Field results indicated significant differences in roadway support characteristics between flooded and non-flooded areas. Support characteristics in some flooded areas recovered over time, while others did not. Voids were detected in culvert and bridge abutment backfill materials shortly after flooding and several months after flooding. A catalog of field assessment techniques and 20 potential repair/mitigation solutions are provided in this report. A flow chart relating the damages observed, assessment techniques, and potential repair/mitigation solutions is provided. These options are discussed for paved/unpaved roads, culverts, and bridge abutments, and are applicable for both primary and secondary roadways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main goal of the research described in this report was to evaluate countermeasures that agencies can use to reduce speeds as drivers enter rural communities located on high-speed roadways. The objectives of this study were as follows: * Identify and summarize countermeasures used to manage speeds in transition zones * Demonstrate the effectiveness of countermeasures that are practical for high- to low-speed transition zones * Acquire additional information about countermeasures that may show promise but lack sufficient evidence of effectiveness * Develop an application toolbox to assist small communities in selecting appropriate transition zones and effective countermeasures for entrances to small rural communities The team solicited small communities that were interested in participating in the Phase II study and several communities were also recommended. The treatments evaluated were selected by carefully considering traffic-calming treatments that have been used effectively in other countries for small rural communities, as well as the information gained from the first phase of the project. The treatments evaluated are as follows: * Transverse speed bars * Colored entrance treatment * Temporary island * Radar-activated speed limit sign * Speed feedback sign The toolbox publication and four focused tech briefs also cover the results of this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary purpose of this project was to assess the potential of a nondestructive remote sensing system, specifically, ground penetrating subsurface interface radar, for identification and evaluation of D-cracking pavement failures. A secondary purpose was to evaluate the effectiveness of this technique for locating voids under pavements and determining the location of steel reinforcement. From the data collected and the analysis performed to date, the following conclusions can be made regarding the ground penetrating radar system used for this study: (1) steel reinforcement can be accurately located; (2) pavement thickness can be determined; (3) distressed areas in pavements can be located and broadly classified as to severity of deterioration; (4) voids under pavements can be located; and (5) higher resolution recording equipment is required to accurately determine both the thickness of sound pavement remaining over distressed areas and the depth of void areas under pavements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamic speed feedback sign (DSFS) systems are traffic control devices that are programmed to provide a message to drivers exceeding a certain speed thresh¬old. A DSFS system typically consists of a speed-measuring device, which may be loop detectors or radar, and a message sign that displays feedback to drivers who exceed a predetermined speed threshold. The feedback may be the driver’s actual speed, a message like “SLOW DOWN,” or activation of a warning device such as beacons or a curve warning sign. For more on this topic by these authors, see also "Evaluation of Dynamic Speed Feedback Signs on Curves: A National Demonstration Project": http://www.trb.org/main/blurbs/172092.aspx

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two portable Radio Frequency IDentification (RFID) systems (made by Texas Instruments and HiTAG) were developed and tested for bridge scour monitoring by the Department of Civil and Environmental Engineering at the University of Iowa (UI). Both systems consist of three similar components: 1) a passive cylindrical transponder of 2.2 cm in length (derived from transmitter/responder); 2) a low frequency reader (~134.2 kHz frequency); and 3) an antenna (of rectangular or hexagonal loop). The Texas Instruments system can only read one smart particle per time, while the HiTAG system was successfully modified here at UI by adding the anti-collision feature. The HiTAG system was equipped with four antennas and could simultaneously detect 1,000s of smart particles located in a close proximity. A computer code was written in C++ at the UI for the HiTAG system to allow simultaneous, multiple readouts of smart particles under different flow conditions. The code is written for the Windows XP operational system which has a user-friendly windows interface that provides detailed information regarding the smart particle that includes: identification number, location (orientation in x,y,z), and the instance the particle was detected.. These systems were examined within the context of this innovative research in order to identify the best suited RFID system for performing autonomous bridge scour monitoring. A comprehensive laboratory study that included 142 experimental runs and limited field testing was performed to test the code and determine the performance of each system in terms of transponder orientation, transponder housing material, maximum antenna-transponder detection distance, minimum inter-particle distance and antenna sweep angle. The two RFID systems capabilities to predict scour depth were also examined using pier models. The findings can be summarized as follows: 1) The first system (Texas Instruments) read one smart particle per time, and its effective read range was about 3ft (~1m). The second system (HiTAG) had similar detection ranges but permitted the addition of an anti-collision system to facilitate the simultaneous identification of multiple smart particles (transponders placed into marbles). Therefore, it was sought that the HiTAG system, with the anti-collision feature (or a system with similar features), would be preferable when compared to a single-read-out system for bridge scour monitoring, as the former could provide repetitive readings at multiple locations, which could help in predicting the scour-hole bathymetry along with maximum scour depth. 2) The HiTAG system provided reliable measures of the scour depth (z-direction) and the locations of the smart particles on the x-y plane within a distance of about 3ft (~1m) from the 4 antennas. A Multiplexer HTM4-I allowed the simultaneous use of four antennas for the HiTAG system. The four Hexagonal Loop antennas permitted the complete identification of the smart particles in an x, y, z orthogonal system as function of time. The HiTAG system can be also used to measure the rate of sediment movement (in kg/s or tones/hr). 3) The maximum detection distance of the antenna did not change significantly for the buried particles compared to the particles tested in the air. Thus, the low frequency RFID systems (~134.2 kHz) are appropriate for monitoring bridge scour because their waves can penetrate water and sand bodies without significant loss of their signal strength. 4) The pier model experiments in a flume with first RFID system showed that the system was able to successfully predict the maximum scour depth when the system was used with a single particle in the vicinity of pier model where scour-hole was expected. The pier model experiments with the second RFID system, performed in a sandbox, showed that system was able to successfully predict the maximum scour depth when two scour balls were used in the vicinity of the pier model where scour-hole was developed. 5) The preliminary field experiments with the second RFID system, at the Raccoon River, IA near the Railroad Bridge (located upstream of 360th street Bridge, near Booneville), showed that the RFID technology is transferable to the field. A practical method would be developed for facilitating the placement of the smart particles within the river bed. This method needs to be straightforward for the Department of Transportation (DOT) and county road working crews so it can be easily implemented at different locations. 6) Since the inception of this project, further research showed that there is significant progress in RFID technology. This includes the availability of waterproof RFID systems with passive or active transponders of detection ranges up to 60 ft (~20 m) within the water–sediment column. These systems do have anti-collision and can facilitate up to 8 powerful antennas which can significantly increase the detection range. Such systems need to be further considered and modified for performing automatic bridge scour monitoring. The knowledge gained from the two systems, including the software, needs to be adapted to the new systems.