3 resultados para RNI(2)B(2)C
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The Federal Highway Administration (FHWA) approves the selection of the Reconstruction of All or Part of the Interstate (Construction Alternative) as the Preferred Alternative to provide improvements to the interstate system in the Omaha/Council Bluffs metropolitan area, extending across the Missouri River on Interstate 80 to east of the Interstate 480 interchange in Omaha, Nebraska. The study considered long-term, broad-based transportation improvements along Interstate I-29 (I-29), I-80, and I-480, including approximately 18 mainline miles of interstate and 14 interchanges (3 system, 11 service), that would add capacity and correct functional issues along the mainline and interchanges and upgrade the I-80 Missouri River Crossing. FHWA also approves the decisions to provide full access between West Broadway and I-29, design the I-80/I-29 overlap section as a dual-divided freeway, and locating the new I-80 Missouri River Bridge north of the existing bridge. Improvements to the interstate system, once implemented, would bring the segments of I-80 and I-29 (see Figure 1) up to current engineering standards and accommodate future traffic needs. This Record of Decision (ROD) concludes Tier 1 of the Council Bluffs Interstate System (CBIS) Improvements Project. Tier 1 included an examination of the area’s transportation needs, a study of alternatives to satisfy them, and broad consideration of potential environmental and social impacts. The Tier 1 evaluation consisted of a sufficient level of engineering and environmental detail to assist decision makers in selecting a preferred transportation strategy. During Tier 1 a Draft EIS (FHWA-IA- EIS-04-01D) was developed which was approved by FHWA, Iowa DOT, and Nebraska Department of Roads (NDOR) in November 2004 with comments accepted through March 15, 2005. The Draft EIS summarized the alternatives that were considered to address the transportation needs around Council Bluffs; identified reconstruction of all or part of the interstate, the “Construction Alternative,” as the Preferred Alternative; identified three system-level decisions that needed to be made at the Tier 1 level; and invited comment on the issues. The Final EIS (FHWA-IA- EIS-04-01F) further documented the Construction Alternative as the Preferred Alternative and identified the recommended decisions for the three system level decisions that needed to be made in Tier 1. This ROD defines the Selected Alternative determined in the Tier 1 studies.
Resumo:
This project was undertaken to study the relationships between the performance of locally available asphalts and their physicochemical properties under Iowa conditions with the ultimate objective of development of a locally and performance-based asphalt specification for durable pavements. Physical and physicochemical tests were performed on three sets of asphalt samples including: (a) twelve samples from local asphalt suppliers and their TFOT residues, (b) six core samples of known service records, and (c) a total of 79 asphalts from 10 pavement projects including original, lab aged and recovered asphalts from field mixes, as well as from lab aged mixes. Tests included standard rheological tests, HP-GPC and TMA. Some specific viscoelastic tests (at 5 deg C) were run on b samples and on some a samples. DSC and X-ray diffraction studies were performed on a and b samples. Furthermore, NMR techniques were applied to some a, b and c samples. Efforts were made to identify physicochemical properties which are correlated to physical properties known to affect field performance. The significant physicochemical parameters were used as a basis for an improved performance-based trial specification for Iowa to ensure more durable pavements.
Resumo:
The effect of coarse aggregate gradation and cement content on strength of concrete was studied. Concrete made of Iowa Department of Transportation Standard Mix C-3 and Aggregate Gradation No. 3 were selected as reference. C-3 proportions were used for mixes #1 and #2. C-3 mix with 10% reduction of the cement content was used for mix #3. C-3 mix with 20% reduction of the cement content was used for mix #4. On the other hand, mix #1 used coarse aggregate of Gradation No. 3, while mixes #2, #3, and #4 used coarse aggregate mix of 65% concrete stone and 35% 3/8 in. chips. It was found that strengths of portland cement concrete decrease with decreasing cement factor. On the other hand, 35% of chip replacement for coarse aggregate increases strengths of concrete. By replacing 35% of coarse aggregate with chips, one could reduce cement factor 10% and achieve equivalent strengths.