4 resultados para RESINOUS SOLVENT
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This document describes planned investments in Iowa’s multimodal transportation system including aviation, transit, railroads, trails, and highways. A large part of funding available for highway programming comes from the federal government. Accurately estimating future federal funding levels is dependent on having a multiyear federal transportation authorization bill in place and having a sustainable and solvent federal Highway Trust Fund. The most recent federal authorization, Moving Ahead for Progress in the 21st Century (MAP-21), will expire September 30, 2014. At the same time that MAP-21 expires and absent Congressional action, the federal Highway Trust Fund will no longer be able provide funding at current levels resulting in up to a 90 percent reduction in federal highway funding for federal fiscal year 2015. These two issues provide funding uncertainty with this program in fiscal years 2015 and beyond.
Resumo:
This document describes planned investments in Iowa's multimodal transportation system including aviation, transit, railroads, trails, and highways. A large part of funding available for highway programming comes from the federal government. Accurately estimating future federal funding levels is dependent on having a multiyear federal transportation authorization bill in place and having a sustainable and solvent federal Highway Trust Fund. The most recent federal authorization, Moving Ahead for Progress in the 21st Century (MAP-21), will expire September 30, 2014. At the same time that MAP-21 expires and absent Congressional action, the federal Highway Trust Fund will no longer be able to provide funding at current levels resulting in the full elimination of federal highway funding for new projects in federal fiscal year 2015. These two issues provide funding uncertainty with this program in fiscal years 2015 and beyond.
Use of Reagent Grade Versus Industrial Grade Trichlorethylene in Asphalt Recoveries, MLR-83-05, 1983
Resumo:
This is a continuation of a project initiated a year ago to determine any differences in test results on recovered asphalt cements caused by the use of industrial grade of solvent as compared with the reagent grade. AASHTO specifies the use of reagent grade of trichlorethylene, but the Laboratory uses industrial grade which costs much less. Last year this objective of the project was aborted when it was found that a larger difference in test results was obtained between the two distillation apparatuses than between the two solvents, Then all efforts were directed toward obtaining uniformity in test results between the apparatuses under the east hood as compared with that under the west hood. Considerable progress was made toward this end. (See report under this same title dated April 1982). The objective this year was to again evaluate the results when using both variables (apparatuses and solvents). Another objective developed later in this investigation; this was to determine any differences in test results on recovered asphalt cements caused by the use of reclaimed trichlorethylene (from the distillation process) as compared with the use of industrial grade of solvent. At the present time the reclaimed trichlorethylene is discarded. If the reclaimed solvent could be used for further recoveries, a considerable savings in solvent costs would result.
Resumo:
The ends of prestressed concrete beams under expansion joints are often exposed to moisture and chlorides. Left unprotected, the moisture and chlorides come in contact with the ends of the prestressing strands and/or the mild reinforcing, resulting in corrosion. Once deterioration begins, it progresses unless some process is employed to address it. Deterioration can lead to loss of bearing area and therefore a reduction in bridge capacity. Previous research has looked into the use of concrete coatings (silanes, epoxies, fiber-reinforced polymers, etc.) for protecting prestressed concrete beam ends but found that little to no laboratory research has been done related to the performance of these coatings in this specific type of application. The Iowa Department of Transportation (DOT) currently specifies coating the ends of exposed prestressed concrete beams with Sikagard 62 (a high-build, protective, solvent-free, epoxy coating) at the precast plant prior to installation on the bridge. However, no physical testing of Sikagard 62 in this application has been completed. In addition, the Iowa DOT continues to see deterioration in the prestressed concrete beam ends, even those treated with Sikagard 62. The goals of this project were to evaluate the performance of the Iowa DOT-specified beam-end coating as well as other concrete coating alternatives based on the American Association of State Highway and Transportation Officials (AASHTO) T259-80 chloride ion penetration test and to test their performance on in-service bridges throughout the duration of the project. In addition, alternative beam-end forming details were developed and evaluated for their potential to mitigate and/or eliminate the deterioration caused by corrosion of the prestressing strands on prestressed concrete beam ends used in bridges with expansion joints. The alternative beam-end details consisted of individual strand blockouts, an individual blockout for a cluster of strands, dual blockouts for two clusters of strands, and drilling out the strands after they are flush cut. The goal of all of the forming alternatives was to offset the ends of the prestressing strands from the end face of the beam and then cover them with a grout/concrete layer, thereby limiting or eliminating their exposure to moisture and chlorides.