7 resultados para Quantum field effects

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The result and experience of field implementation of the maturity method on 14 portland cement concrete (PCC) paving and patching projects during 1995 are summarized in this report. The procedure for developing reference PCC maturity-strength curve of concrete is discussed. Temperature measurement as well as effects of datum temperature, entrained air content and type of aggregate on maturity-strength relationship are examined. Some limitations of the maturity method are discussed. The available field experience and results indicate that the maturity method provides a simple approach to determine strength of concrete, and can be easily implemented in field paving and patching projects. The use of the maturity method may result in reduced project construction time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In view of the energy, environmental, and economic advantages of the foamed asphalt process using local aggregates in cold mixes and the promising results from Research Project HR-212, a 4.2-mile section of county road in Muscatine County was built with foamed asphalt and local aggregates during August-September 1983. Extensive laboratory evaluation was carried out on five plant mixes representing foamed mixes used in the nine test sections, a laboratory prepared foamed mix, and a laboratory prepared hot mix similar to Plant Mix 1. The foamed mixes were compacted, cured under 15 curing conditions and tested for bulk specific gravity, Marshall stability at 77° F and at 140° F, cured moisture content, resilient modulus and effects of moisture damage due to freeze-thaw cycles, water soaking, and vacuum saturation. In addition, four sets of 83 core samples were taken at 1 to 15 months and tested for moisture content, specific gravity, Marshall stability, and resilient modulus. In summary, the test road has performed satisfactorily for almost two years. The few early construction problems encountered were to be expected for experimental projects dealing with new materials and technologies. Overall results to date are encouraging and foamed asphalt mixes have proved to have the potential as a viable base material in areas where marginal aggregates are available. It is hoped and expected that performance evaluation of the test sections will be continued and that more foamed asphalt trial projects will be constructed and monitored so that experiences and findings from this project can be verified and mix design criteria can be gradually established. For future foamed asphalt projects it is recommended that anti-stripping additives, such as hydrated lime, be added in view of the potential moisture susceptibility of foamed mixes observed in the laboratory evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study was made of the detrimental effects of trace amounts of calcium sulfate (occurring naturally in halite deposits used for deicing) on portland cement concrete pavements. It was found that sulfate introduced as gypsum with sodium chloride in deicing brines can have detrimental effects on portland cement mortar. Concentrations of sulfate as low as 0.5% of the solute rendered the brine destructive. Conditions of brine application were critical to specimen durability. The mechanisms of deterioration were found to be due to pore filling resulting from compound formation and deposition. A field evaluation of deteriorating joints suggests that the sulfate phenomena demonstrated in the laboratory also operates in the field. A preliminary evaluation was made of remedies: limits on sulfates, fly ash admixtures, treatment of existing pavement, and salt treatments. This report gives details of the research objectives, experimental design, field testing, and possible solutions. Recommendations for further study are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nationally, there are questions regarding the design, fabrication, and erection of horizontally curved steel girder bridges due to unpredicted girder displacements, fit-up, and locked-in stresses. One reason for the concerns is that up to one-quarter of steel girder bridges are being designed with horizontal curvature. There is also an urgent need to reduce bridge maintenance costs by eliminating or reducing deck joints, which can be achieved by expanding the use of integral abutments to include curved girder bridges. However, the behavior of horizontally curved bridges with integral abutments during thermal loading is not well known nor understood. The purpose of this study was to investigate the behavior of horizontal curved bridges with integral abutment (IAB) and semi-integral abutment bridges (SIAB) with a specific interest in the response to changing temperatures. The long-term objective of this effort is to establish guidelines for the use of integral abutments with curved girder bridges. The primary objective of this work was to monitor and evaluate the behavior of six in-service, horizontally curved, steel-girder bridges with integral and semi-integral abutments. In addition, the influence of bridge curvature, skew and pier bearing (expansion and fixed) were also part of the study. Two monitoring systems were designed and applied to a set of four horizontally curved bridges and two straight bridges at the northeast corner of Des Moines, Iowa—one system for measuring strains and movement under long term thermal changes and one system for measuring the behavior under short term, controlled live loading. A finite element model was developed and validated against the measured strains. The model was then used to investigate the sensitivity of design calculations to curvature, skew and pier joint conditions. The general conclusions were as follows: (1) There were no measurable differences in the behavior of the horizontally curved bridges and straight bridges studied in this work under thermal effects. For preliminary member sizing of curved bridges, thermal stresses and movements in a straight bridge of the same length are a reasonable first approximation. (2) Thermal strains in integral abutment and semi-integral abutment bridges were not noticeably different. The choice between IAB and SIAB should be based on life – cycle costs (e.g., construction and maintenance). (3) An expansion bearing pier reduces the thermal stresses in the girders of the straight bridge but does not appear to reduce the stresses in the girders of the curved bridge. (4) An analysis of the bridges predicted a substantial total stress (sum of the vertical bending stress, the lateral bending stress, and the axial stress) up to 3 ksi due to temperature effects. (5) For the one curved integral abutment bridge studied at length, the stresses in the girders significantly vary with changes in skew and curvature. With a 10⁰ skew and 0.06 radians arc span length to radius ratio, the curved and skew integral abutment bridges can be designed as a straight bridge if an error in estimation of the stresses of 10% is acceptable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Capacity is affected by construction type and its intensity on adjacent open traffic lanes. The effect on capacity is a function of vehicles moving in and out of the closed lanes of the work zone, and the presence of heavy construction vehicles. Construction activity and its intensity, however, are not commonly considered in estimating capacity of a highway lane. The main purpose of this project was to attempt to quantify the effects of construction type and intensity (e.g. maintenance, rehabilitation, reconstruction, and milling) on work zone capacity. The objective of this project is to quantify the effects of construction type and its intensity on work zone capacity and to develop guidelines for MoDOT to estimate the specific operation type and intensity that will improve the traffic flow by reducing the traffic flow and queue length commonly associated with work zones. Despite the effort put into field data collection, the data collected did not show a full speed-flow chart therefore extracting a reliable capacity value was difficult. A statistical comparison between the capacity values found in this study using either methodologies indicates that there is an effect of construction activity on the values work zone capacity. It was found that the heavy construction activity reduces the capacity. It is very beneficial to conduct similar studies on the capacity of work zone with different lane closure barriers, which is also directly related to the type of work zone being short-term or long-term work zones. Also, the effect of different geometric and environmental characteristics of the roadway should be considered in future studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of diethylenetriaminpenta(methylenephosphonic acid) (DTPMP), a phosphonate inhibitor, on the growth of delayed ettringite have been evaluated using concrete in highway US 20 near Williams, Iowa, and the cores of six highways subject to moderate (built in 1992) or minor (built in 1997) deterioration. Application of 0.01 and 0.1 vol. % DTPMP to cores was made on a weekly or monthly basis for one year under controlled laboratory-based freeze-thaw and wet-dry conditions over a temperature range of -15 degrees to 58 degrees C to mimic extremes in Iowa roadway conditions. The same concentrations of phosphonate were also applied to cores left outside (roof of Science I at Iowa State University) over the same period of time. Nineteen applications of 0.1 vol. % DTPMP with added deicing salt solution (about 23 weight % NACL) were made to US 20 during the winters of 2003 and 2004. In untreated samples, air voids, pores, and occasional cracks are lined with acicular ettringite crystals (up to 50 micrometers in length) whereas air voids, pores, and cracks in concrete from the westbound lane of US 20 are devoid of ettringite up to a depth of about 0.5 mm from the surface of the concrete. Ettringite is also absent in zones up to 6 mm from the surface of concrete slabs placed on the roof of Science I and cores subject to laboratory-based freeze-thaw experiments. In these zones, the relatively high concentration of DTPMP caused it to behave as a chelator. Stunted ettringite crystals 5 to 25 micrometers in length, occasionally coated with porlandite, form on the margins of these zones indicating that in these areas DTPMP behaved as an inhibitor due to a reduction in the concentration of phosphonate. Analyses of mixes of ettringite and DTPMP using electrospray mass spectrometry suggests that the stunting of ettringite growth is caused by the adsorption of a Ca2+ ion and a water molecule to deprotonated DTPMP on the surface of the {0001} face of ettringite. It is anticipated that by using a DTPMP concentration of between 0.001 and 0.01 vol. % for the extended life of a highway (i.e. >20 years), deterioration caused by the expansive growth of ettringite will be markedly reduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overarching goal of the proposed research was to provide a predictive tool for knickpoint propagation within the HCA (Hungry Canyon Alliance) territory. Knickpoints threaten the stability of bridge structures in Western Iowa. The study involved detailed field investigations over two years in order to monitor the upstream migration of a knickpoint on Mud Creek in Mills County, IA and identify the key mechanisms triggering knickpoint propagation. A state-of-the-art laser level system mounted on a movable truss provided continuous measurements of the knickpoint front for different flow conditions. A pressure transducer found in proximity of the truss provided simultaneous measurements of the flow depth. The laser and pressure transducer measurements led to the identification of the conditions at which the knickpoint migration commences. It was suggested that negative pressures developed by the reverse roller flow near the toe of the knickpoint face triggered undercutting of the knickpoint at this location. The pressure differential between the negative pressure and the atmospheric pressure also draws the impinging jet closer to the knickpoint face producing scour. In addition, the pressure differential may induce suction of sediment from the face. Other contributing factors include slump failure, seepage effects, and local fluvial erosion due to the exerted fluid shear. The prevailing flow conditions and soil information along with the channel cross-sectional geometry and gradient were used as inputs to a transcritical, one dimensional, hydraulic/geomorphic numerical model, which was used to map the flow characteristics and shear stress conditions near the knickpoint. Such detailed flow calculations do not exist in the published literature. The coupling of field and modeling work resulted in the development of a blueprint methodology, which can be adopted in different parts of the country for evaluating knickpoint evolution. This information will assist local government agencies in better understanding the principal factors that cause knickpoint propagation and help estimate the needed response time to control the propagation of a knickpoint after one has been identified.