9 resultados para Processor power estimation

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This booklet is designed to assist those who have been appointed as an attorney-in-fact, those who are considering the need for a power of attorney, or those who have an interest in the subject. This is a general overview.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Speech by Governor Culver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This booklet is designed to assist those who have been appointed as an attorney-in-fact, those who are considering the need for a power of attorney, or those who have an interest in the subject. This is a general overview of the laws governing powers of attorney and, like most general overviews it will apply in most situations, but not all. Small differences and individual circumstances can be very important in resolving legal problems and the general guidance provided by this booklet cannot take such differences into account. Keep in mind that the laws continually change and information in this booklet is not designed to take the place of legal counsel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes a statewide study conducted to develop main-channel slope (MCS) curves for 138 selected streams in Iowa with drainage areas greater than 100 square miles. MCS values determined from the curves can be used in regression equations for estimating flood frequency discharges. Multi-variable regression equations previously developed for two of the three hydrologic regions defined for Iowa require the measurement of MCS. Main-channel slope is a difficult measurement to obtain for large streams using 1:24,000-scale topographic maps. The curves developed in this report provide a simplified method for determining MCS values for sites located along large streams in Iowa within hydrologic Regions 2 and 3. The curves were developed using MCS values quantified for 2,058 selected sites along 138 selected streams in Iowa. A geographic information system (GIS) technique and 1:24,000-scale topographic data were used to quantify MCS values for the stream sites. The sites were selected at about 5-mile intervals along the streams. River miles were quantified for each stream site using a GIS program. Data points for river-mile and MCS values were plotted and a best-fit curve was developed for each stream. An adjustment was applied to all 138 curves to compensate for differences in MCS values between manual measurements and GIS quantification. The multi-variable equations for Regions 2 and 3 were developed using manual measurements of MCS. A comparison of manual measurements and GIS quantification of MCS indicates that manual measurements typically produce greater values of MCS compared to GIS quantification. Median differences between manual measurements and GIS quantification of MCS are 14.8 and 17.7 percent for Regions 2 and 3, respectively. Comparisons of percentage differences between flood-frequency discharges calculated using MCS values of manual measurements and GIS quantification indicate that use of GIS values of MCS for Region 3 substantially underestimate flood discharges. Mean and median percentage differences for 2- to 500-year recurrence-interval flood discharges ranged from 5.0 to 5.3 and 4.3 to 4.5 percent, respectively, for Region 2 and ranged from 18.3 to 27.1 and 12.3 to 17.3 percent for Region 3. The MCS curves developed from GIS quantification were adjusted by 14.8 percent for streams located in Region 2 and by 17.7 percent for streams located in Region 3. Comparisons of percentage differences between flood discharges calculated using MCS values of manual measurements and adjusted-GIS quantification for Regions 2 and 3 indicate that the flood-discharge estimates are comparable. For Region 2, mean percentage differences for 2- to 500-year recurrence-interval flood discharges ranged between 0.6 and 0.8 percent and median differences were 0.0 percent. For Region 3, mean and median differences ranged between 5.4 to 8.4 and 0.0 to 0.3 percent, respectively. A list of selected stream sites presented with each curve provides information about the sites including river miles, drainage areas, the location of U.S. Geological Survey stream flowgage stations, and the location of streams Abstract crossing hydro logic region boundaries or the Des Moines Lobe landforms region boundary. Two examples are presented for determining river-mile and MCS values, and two techniques are presented for computing flood-frequency discharges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report on applying agreed-upon procedures to the Villisca Municipal Power Plant’s accounting procedures, cash and investment balances and compliance with Code of Iowa requirements for the period February 1, 2007 through December 31, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amana Farms is using an anaerobic digestion, which is a two-stage digester that converts manure and other organic wastes into three valuable by-products: 1) Biogas – to fuel an engine/generator set to create electricity; 2) Biosolids - used as a livestock bedding material or as a soil amendment; 3) Liquid stream - will be applied as a low-odor fertilizer to growing crops. (see Business Plan appendix H) The methane biogas will be collected from the two stages of the anaerobic digestion vessel and used for fuel in the combined heat and power engine/generator sets. The engine/generator sets are natural gasfueled reciprocating engines modified to burn biogas. The electricity produced by the engine/generator sets will be used to offset on-farm power consumption and the excess power will be sold directly to Amana Society Service Company as a source of green power. The waste heat, in the form of hot water, will be collected from both the engine jacket liquid cooling system and from the engine exhaust (air) system. Approximately 30 to 60% of this waste heat will be used to heat the digester. The remaining waste heat will be used to heat other farm buildings and may provide heat for future use for drying corn or biosolids. The digester effluent will be pumped from the effluent pit at the end of the anaerobic digestion vessel to a manure solids separator. The mechanical manure separator will separate the effluent digested waste stream into solid and liquid fractions. The solids will be dewatered to approximately a 35% solid material. Some of the separated solids will be used by the farm for a livestock bedding replacement. The remaining separated solids may be sold to other farms for livestock bedding purposes or sold to after-markets, such as nurseries and composters for soil amendment material. The liquid from the manure separator, now with the majority of the large solids removed, will be pumped into the farm’s storage lagoon. A significant advantage of the effluent from the anaerobic digestion treatment process is that the viscosity of the effluent is such that the liquid effluent can now be pumped through an irrigation nozzle for field spreading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate refers to the long-term course or condition of weather, usually over a time scale of decades and longer. It has been documented that our global climate is changing (IPCC 2007, Copenhagen Diagnosis 2009), and Iowa is no exception. In Iowa, statistically significant changes in our precipitation, streamflow, nighttime minimum temperatures, winter average temperatures, and dewpoint humidity readings have occurred during the past few decades. Iowans are already living with warmer winters, longer growing seasons, warmer nights, higher dew-point temperatures, increased humidity, greater annual streamflows, and more frequent severe precipitation events (Fig. 1-1) than were prevalent during the past 50 years. Some of the impacts of these changes could be construed as positive, and some are negative, particularly the tendency for greater precipitation events and flooding. In the near-term, we may expect these trends to continue as long as climate change is prolonged and exacerbated by increasing greenhouse gas emissions globally from the use of fossil fuels and fertilizers, the clearing of land, and agricultural and industrial emissions. This report documents the impacts of changing climate on Iowa during the past 50 years. It seeks to answer the question, “What are the impacts of climate change in Iowa that have been observed already?” And, “What are the effects on public health, our flora and fauna, agriculture, and the general economy of Iowa?”

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2008 Biobased Industry Outlook Conference was held September 7-10 on the Iowa State University campus. Over 750 people attended the plenary sessions on the morning of September 8th; 580 people registered for the full conference. Sponsorships: $92,500 in sponsorships in addition to the IPF was secured for the conference (considered “match” to the IPF grant). Including the $11,250 IPF sponsorship ($12,500 minus overhead charges of $1,250), the total amount contributed for conference sponsorships was $103,750. A list of sponsors and the amount of sponsorship is listed in Appendix A. Sponsorship funds received from the Iowa Power Fund were used for supplies and materials. Please see Appendix B which documents the transfer of IPF grant funds internally at ISU and their use.