3 resultados para Process Modeling, Collaboration, Distributed Modeling, Collaborative Technology
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This phase of the research project involved two major efforts: (1) Complete the implementation of AEC-Sync (formerly known as Attolist) on the Iowa Falls Arch Bridge project and (2) develop a web-based project management system (WPMS) for projects under $10 million. For the first major effort, AEC-Sync was provided for the Iowa Department of Transportation (DOT) in a software as a service agreement, allowing the Iowa DOT to rapidly implement the solution with modest effort. During the 2010 fiscal year, the research team was able to help with the implementation process for the solution. The research team also collected feedback from the Broadway Viaduct project team members before the start of the project and implementation of the solution. For the 2011 fiscal year, the research team collected the post-project surveys from the Broadway Viaduct project members and compared them to the pre-project survey results. The result of the AEC-Sync implementation in the Broadway Viaduct project was a positive one. The project members were satisfied with the performance of AEC-Sync and how it facilitated document management and transparency. In addition, the research team distributed, collected, and analyzed the pre-project surveys for the Iowa Falls Arch Bridge project. During the 2012 fiscal year, the research team analyzed the post-project surveys for the Iowa Falls Arch Bridge project AEC-Sync implementation and found a positive outcome when compared to the pre-project surveys. The second major effort for this project involved the identification and implementation of a WPMS solution for smaller bridge and highway projects. During the 2011 fiscal year, Microsoft SharePoint was selected to be implemented on these smaller highway projects. In this year, workflows for the shop/working drawings for the smaller highway projects specified in Section 1105 of the Iowa DOT Specifications were developed. These workflows will serve as the guide for the development of the SharePoint pages. In order to implement the Microsoft SharePoint pages, the effort of an integrated team proved to be vital because it brought together the expertise required from researchers, programmers, and webpage developers to develop the SharePoint pages.
Resumo:
Hydrologic analysis is a critical part of transportation design because it helps ensure that hydraulic structures are able to accommodate the flow regimes they are likely to see. This analysis is currently conducted using computer simulations of water flow patterns, and continuing developments in elevation survey techniques result in higher and higher resolution surveys. Current survey techniques now resolve many natural and anthropogenic features that were not practical to map and, thus, require new methods for dealing with depressions and flow discontinuities. A method for depressional analysis is proposed that uses the fact that most anthropogenically constructed embankments are roughly more symmetrical with greater slopes than natural depressions. An enforcement method for draining depressions is then analyzed on those depressions that should be drained. This procedure has been evaluated on a small watershed in central Iowa, Walnut Creek of the South Skunk River, HUC12 # 070801050901, and was found to accurately identify 88 of 92 drained depressions and place enforcements within two pixels, although the method often tries to drain prairie pothole depressions that are bisected by anthropogenic features.
Resumo:
In work-zone configurations where lane drops are present, merging of traffic at the taper presents an operational concern. In addition, as flow through the work zone is reduced, the relative traffic safety of the work zone is also reduced. Improving work-zone flow-through merge points depends on the behavior of individual drivers. By better understanding driver behavior, traffic control plans, work zone policies, and countermeasures can be better targeted to reinforce desirable lane closure merging behavior, leading to both improved safety and work-zone capacity. The researchers collected data for two work-zone scenarios that included lane drops with one scenario on the Interstate and the other on an urban arterial roadway. The researchers then modeled and calibrated these scenarios in VISSIM using real-world speeds, travel times, queue lengths, and merging behaviors (percentage of vehicles merging upstream and near the merge point). Once built and calibrated, the researchers modeled strategies for various countermeasures in the two work zones. The models were then used to test and evaluate how various merging strategies affect safety and operations at the merge areas in these two work zones.