33 resultados para Pre-tensioning Structural Design

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Moisture sensitivity of Hot Mix Asphalt (HMA) mixtures, generally called stripping, is a major form of distress in asphalt concrete pavement. It is characterized by the loss of adhesive bond between the asphalt binder and the aggregate (a failure of the bonding of the binder to the aggregate) or by a softening of the cohesive bonds within the asphalt binder (a failure within the binder itself), both of which are due to the action of loading under traffic in the presence of moisture. The evaluation of HMA moisture sensitivity has been divided into two categories: visual inspection test and mechanical test. However, most of them have been developed in pre-Superpave mix design. This research was undertaken to develop a protocol for evaluating the moisture sensitivity potential of HMA mixtures using the Nottingham Asphalt Tester (NAT). The mechanisms of HMA moisture sensitivity were reviewed and the test protocols using the NAT were developed. Different types of blends as moisture-sensitive groups and non-moisture-sensitive groups were used to evaluate the potential of the proposed test. The test results were analyzed with three parameters based on performance character: the retained flow number depending on critical permanent deformation failure (RFNP), the retained flow number depending on cohesion failure (RFNC), and energy ratio (ER). Analysis based on energy ratio of elastic strain (EREE ) at flow number of cohesion failure (FNC) has higher potential to evaluate the HMA moisture sensitivity than other parameters. If the measurement error in data-acquisition process is removed, analyses based on RFNP and RFNC would also have high potential to evaluate the HMA moisture sensitivity. The vacuum pressure saturation used in AASHTO T 283 and proposed test has a risk to damage specimen before the load applying.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Moisture sensitivity of Hot Mix Asphalt (HMA) mixtures, generally called stripping, is a major form of distress in asphalt concrete pavement. It is characterized by the loss of adhesive bond between the asphalt binder and the aggregate (a failure of the bonding of the binder to the aggregate) or by a softening of the cohesive bonds within the asphalt binder (a failure within the binder itself), both of which are due to the action of loading under traffic in the presence of moisture. The evaluation of HMA moisture sensitivity has been divided into two categories: visual inspection test and mechanical test. However, most of them have been developed in pre-Superpave mix design. This research was undertaken to develop a protocol for evaluating the moisture sensitivity potential of HMA mixtures using the Nottingham Asphalt Tester (NAT). The mechanisms of HMA moisture sensitivity were reviewed and the test protocols using the NAT were developed. Different types of blends as moisture-sensitive groups and non-moisture-sensitive groups were used to evaluate the potential of the proposed test. The test results were analyzed with three parameters based on performance character: the retained flow number depending on critical permanent deformation failure (RFNP), the retained flow number depending on cohesion failure (RFNC), and energy ratio (ER). Analysis based on energy ratio of elastic strain (EREE ) at flow number of cohesion failure (FNC) has higher potential to evaluate the HMA moisture sensitivity than other parameters. If the measurement error in data-acquisition process is removed, analyses based on RFNP and RFNC would also have high potential to evaluate the HMA moisture sensitivity. The vacuum pressure saturation used in AASHTO T 283 and proposed test has a risk to damage specimen before the load applying.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Phase II follow-up study of IHRB Project TR-473 focused on the performance evaluation of rubblized pavements in Iowa. The primary objective of this study was to evaluate the structural condition of existing rubblized concrete pavements across Iowa through Falling Weight Deflectometer (FWD) tests, Dynamic Cone Penetrometer (DCP) tests, visual pavement distress surveys, etc. Through backcalculation of FWD deflection data using the Iowa State University's advanced layer moduli backcalculation program, the rubblized layer moduli were determined for various projects and compared with each other for correlating with the long-term pavement performance. The AASHTO structural layer coefficient for rubblized layer was also calculated using the rubblized layer moduli. To validate the mechanistic-empirical (M-E) hot mix asphalt (HMA) overlay thickness design procedure developed during the Phase I study, the actual HMA overlay thicknesses from the rubblization projects were compared with the predicted thicknesses obtained from the design software. The results of this study show that rubblization is a valid option to use in Iowa in the rehabilitation of portland cement concrete pavements provided the foundation is strong enough to support construction operations during the rubblization process. The M-E structural design methodology developed during Phase I can estimate the HMA overlay thickness reasonably well to achieve long-lasting performance of HMA pavements. The rehabilitation strategy is recommended for continued use in Iowa under those conditions conducive for rubblization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The authors have post-tensioned and monitored two Iowa bridges and have field tested the post-tensioning of a composite bridge in Florida. In order to provide the practical post-tensioning distribution factors given in this manual, the authors developed a finite element model of a composite bridge and checked the model against a one-half scale laboratory bridge and two actual composite bridges, one of which had a 45 deg skew. Following a brief discussion of this background research, this manual explains the use of elastic, composite beam and bridge section properties, the distribution fractions for symmetrically post-tensioned exterior beams, and a method for computing the strength of a post-tensioned beam. Also included is a design example for a typical, 51.25-ft (15.62-m) span, four-beam composite bridge. Moments for Iowa Department of Transportation rating trucks, H 20 and HS 20 trucks, have been tabulated for design convenience and are included in the appendix.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Culverts are common means to convey flow through the roadway system for small streams. In general, larger flows and road embankment heights entail the use of multibarrel culverts (a.k.a. multi-box) culverts. Box culverts are generally designed to handle events with a 50-year return period, and therefore convey considerably lower flows much of the time. While there are no issues with conveying high flows, many multi-box culverts in Iowa pose a significant problem related to sedimentation. The highly erosive Iowa soils can easily lead to the situation that some of the barrels can silt-in early after their construction, becoming partially filled with sediment in few years. Silting can reduce considerably the capacity of the culvert to handle larger flow events. Phase I of this Iowa Highway Research Board project (TR-545) led to an innovative solution for preventing sedimentation. The solution was comprehensively investigated through laboratory experiments and numerical modeling aimed at screening design alternatives and testing their hydraulic and sediment conveyance performance. Following this study phase, the Technical Advisory Committee suggested to implement the recommended sediment mitigation design to a field site. The site selected for implementation was a 3-box culvert crossing Willow Creek on IA Hwy 1W in Iowa City. The culvert was constructed in 1981 and the first cleanup was needed in 2000. Phase II of the TR 545 entailed the monitoring of the site with and without the selfcleaning sedimentation structure in place (similarly with the study conducted in laboratory). The first monitoring stage (Sept 2010 to December 2012) was aimed at providing a baseline for the operation of the as-designed culvert. In order to support Phase II research, a cleanup of the IA Hwy 1W culvert was conducted in September 2011. Subsequently, a monitoring program was initiated to document the sedimentation produced by individual and multiple storms propagating through the culvert. The first two years of monitoring showed inception of the sedimentation in the first spring following the cleanup. Sedimentation continued to increase throughout the monitoring program following the depositional patterns observed in the laboratory tests and those documented in the pre-cleaning surveys. The second part of Phase II of the study was aimed at monitoring the constructed self-cleaning structure. Since its construction in December 2012, the culvert site was continuously monitored through systematic observations. The evidence garnered in this phase of the study demonstrates the good performance of the self-cleaning structure in mitigating the sediment deposition at culverts. Besides their beneficial role in sediment mitigation, the designed self-cleaning structures maintain a clean and clear area upstream the culvert, keep a healthy flow through the central barrel offering hydraulic and aquatic habitat similar with that in the undisturbed stream reaches upstream and downstream the culvert. It can be concluded that the proposed self-cleaning structural solution “streamlines” the area upstream the culvert in a way that secures the safety of the culvert structure at high flows while producing much less disturbance in the stream behavior compared with the current constructive approaches.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years the Iowa DOT has shifted emphasis from the construction of new roads to the maintenance and preservation of existing highways. A need has developed for analyzing pavements structurally to select the correct rehabilitation strategy and to properly design a pavement overlay if necessary. This need has been fulfilled by Road Rater testing which has been used successfully on all types of pavements to evaluate pavement and subgrade conditions and to design asphaltic concrete overlays. The Iowa Road Rater Design Method has been simplified so that it may be easily understood and used by the widely diverse groups of individuals which may be involved in pavement restoration and management. Road Rater analysis techniques have worked well to date and have been verified by pavement coring, soils sampling and testing, and pavement removal by block sampling. Void detection testing has also been performed experimentally in Iowa, and results indicate that the Road Rater can be used to locate pavement voids and that Road Rater analysis techniques are reasonably accurate. The success of Road Rater research and development has made deflection test data one of the most important pavement management inputs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An innovative structural system for pier columns was investigated through a series of laboratory experiments. The columns and connections examined were comprised of precast concrete segments to accelerate construction. In addition some of the columns employed unbonded post-tensioning to self-center the columns when subjected to lateral loads and structural fuses to control large lateral deflections, dissipate energy, and expedite repair in the event of a catastrophic loading event. Six cantilever columns with varying component materials and connection details were subjected to a regimen of vertical dead loads and cyclic, quasi-static lateral loads. One column was designed as a control column to represent the behavior of a conventional reinforced concrete column and provide a basis for comparison with the remaining five jointed columns designed with the proposed structural system. After sustaining significant damage, the self-centering, jointed columns were repaired by replacing the structural fuses and retested to failure to investigate the effectiveness of the repair. The experiments identified both effective and unsatisfactory details for the jointed system. Two of the jointed columns demonstrated equivalent lateral strength, greater lateral stiffness, and greater lateral deformation capacity than the control column. The self-centering capability of the jointed columns was clearly demonstrated as well, and the repair technique proved effective as demonstrated by nearly identical pre and post repair behavior. The authors believe the proposed system to be a feasible alternative to conventional pier systems and recommend further development of details.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural concrete is one of the most commonly used construction materials in the United States. However, due to changes in design specifications, aging, vehicle impact, etc. – there is a need for new procedures for repairing concrete (reinforced or pretressed) superstructures and substructures. Thus, the overall objective of this investigation was to develop innovative cost effective repair methods for various concrete elements. In consultation with the project advisory committee, it was decided to evaluate the following three repair methods: • Carbon fiber reinforced polymers (CFRPs) for use in repairing damaged prestressed concrete bridges • Fiber reinforced polymers (FRPs) for preventing chloride penetration of bridge columns • Various patch materials The initial results of these evaluations are presented in this three volume final report. Each evaluation is briefly described in the following paragraphs. A more detailed abstract of each evaluation accompanies the volume on that particular investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural concrete is one of the most commonly used construction materials in the United States. However, due to changes in design specifications, aging, vehicle impact, etc. – there is a need for new procedures for repairing concrete (reinforced or pretressed) superstructures and substructures. Thus, the overall objective of this investigation was to develop innovative cost effective repair methods for various concrete elements. In consultation with the project advisory committee, it was decided to evaluate the following three repair methods: • Carbon fiber reinforced polymers (CFRPs) for use in repairing damaged prestressed concrete bridges • Fiber reinforced polymers (FRPs) for preventing chloride penetration of bridge columns • Various patch materials The initial results of these evaluations are presented in this three volume final report. Each evaluation is briefly described in the following paragraphs. A more detailed abstract of each evaluation accompanies the volume on that particular investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural concrete is one of the most commonly used construction materials in the United States. However, due to changes in design specifications, aging, vehicle impact, etc. – there is a need for new procedures for repairing concrete (reinforced or pretressed) superstructures and substructures. Thus, the overall objective of this investigation was to develop innovative cost effective repair methods for various concrete elements. In consultation with the project advisory committee, it was decided to evaluate the following three repair methods: • Carbon fiber reinforced polymers (CFRPs) for use in repairing damaged prestressed concrete bridges • Fiber reinforced polymers (FRPs) for preventing chloride penetration of bridge columns • Various patch materials The initial results of these evaluations are presented in this three volume final report. Each evaluation is briefly described in the following paragraphs. A more detailed abstract of each evaluation accompanies the volume on that particular investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa. The final report for this project consists of three volumes. The first volume (this volume) summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft. However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft, and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction. The second volume introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently. The third volume provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa. The final report for this project consists of three volumes. The first volume summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft. However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft, and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction. The second volume introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently. The third volume (this volume) provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa. The final report for this project consists of three volumes. The first volume summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft. However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft, and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction. The second volume (this volume) introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently. The third volume provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this research was to evaluate the performance of the product Ultracote® (a polymer based additive produced by Ultrapave, a division of Goodyear) as an aggregate pre-treatment for the reduction of asphalt binder absorption in hot mix asphalt (HMA). The product was tested with a paving project in Louisa county, Iowa with aggregate that had historically shown very high asphalt binder absorption. Results of the testing did not provide any evidence of reduction in binder absorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

State Highway Departments and local street and road agencies are currently faced with aging highway systems and a need to extend the life of some of the pavements. The agency engineer should have the opportunity to explore the use of multiple surface types in the selection of a preferred rehabilitation strategy. This study was designed to look at the portland cement concrete overlay alternative and especially the design of overlays for existing composite (portland cement and asphaltic cement concrete) pavements. Existing design procedures for portland cement concrete overlays deal primarily with an existing asphaltic concrete pavement with an underlying granular base or stabilized base. This study reviewed those design methods and moved to the development of a design for overlays of composite pavements. It deals directly with existing portland cement concrete pavements that have been overlaid with successive asphaltic concrete overlays and are in need of another overlay due to poor performance of the existing surface. The results of this study provide the engineer with a way to use existing deflection technology coupled with materials testing and a combination of existing overlay design methods to determine the design thickness of the portland cement concrete overlay. The design methodology provides guidance for the engineer, from the evaluation of the existing pavement condition through the construction of the overlay. It also provides a structural analysis of various joint and widening patterns on the performance of such designs. This work provides the engineer with a portland cement concrete overlay solution to composite pavements or conventional asphaltic concrete pavements that are in need of surface rehabilitation.