3 resultados para Polyacrylic acid
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Many researchers have concluded that secondary or delayed ettringite is responsible for serious premature deterioration of concrete highways. In some poorly performing Iowa concretes, ettringite is the most common secondary mineral but its role in premature deterioration is uncertain since some researchers still maintain that secondary ettringite does not itself cause deterioration. The current research project was designed to determine experimentally if it is possible to reduce secondary ettringite formation in concrete by treating the concrete with commercial crystallization inhibitor chemicals. The hypothesis is such that if the amount of ettringite is reduced, there will also be a concomitant reduction of concrete expansion and cracking. If both ettringite formation and deterioration are simultaneously reduced, then the case for ettringite induced expansion/cracking is strengthened. The experiment used four commercial inhibitors - two phosphonates, a polyacrylic acid, and a phosphate ester. Concrete blocks were subjected to continuous immersion, wet/dry and freeze/thaw cycling in sodium sulfate solutions and in sulfate solutions containing an inhibitor. The two phosphonate inhibitors, Dequest 2060 and Dequest 2010, manufactured by Monsanto Co., were effective in reducing ettringite nucleation and growth in concrete. Two other inhibitors, Good-rite K752 and Wayhib S were somewhat effective, but less so than the two phosphonates. Rapid experiments with solution growth inhibition of ettringite without the presence of concrete phases were used to explore the mechanisms of inhibition of this mineral. Reduction of new ettringite formation in concrete blocks also reduced expansion and cracking of the blocks. This relationship clearly links concrete expansion with this mineral - a conclusion that some research workers have disputed despite theoretical arguments for such a relationship and despite numerous observations of ettringite mineralization in prematurely deteriorated concrete highways. Secondary ettringite nucleation and growth must cause concrete expansion because the only known effect of the inhibitor chemicals is to reduce crystal nucleation and growth, and the inhibitors cannot in any other way be responsible for the reduction in expansion. The mechanism of operation of the inhibitors on ettringite reduction is not entirely clear but the solution growth experiments show that they prevent crystallization of a soluble ettringite precursor gel. The present study shows that ettringite growth alone is not responsible for expansion cracking because the experiments showed that most expansion occurs under wet/dry cycling, less under freeze/thaw cycling, and least under continuous soaking conditions. It was concluded from the different amounts of damage that water absorption by newly-formed, minute ettringite crystals is responsible for part of the observed expansion under wet/dry conditions, and that reduction of freeze resistance by ettringite filling of air-entrainment voids is also important in freeze/thaw environments.
Resumo:
This project was undertaken jointly with a project supported by the Iowa Corn Promotion Board. Together the projects aimed at producing the organic acids, propionic acid and acetic acid, by fermentation. The impacts were to provide agriculturally-based alternatives to production of these acids, currently produced mainly as petrochemicals. The potentially high-demand use for acetic acid is as the "acetate" in Calcium Magnesium Acetate (CMA), the non-corrosive road deicer. Fermentation was, however, far from being an economically acceptable alternative. Gains were made in this work toward making this a feasible route. These advances included (1) development of a variant strain of propionibacteria capable of producing higher concentrations of acids; (2) comparison of conditions for several ways of cultivating free cells and establishment of the relative benefits of each; (3) achievement of the highest productivity in fermentations using immobilized cells; (4) identification of corn steep liquor as a lower cost substrate for the fermentation; (5) application of a membrane extraction system for acid recovery and reduction of product inhibition; and (6) initial use of more detailed economic analysis of process alternatives to guide in the identification of where the greatest payback potential is for future research. At this point, the fermentation route to these acids using the propionibacteria is technically feasible, but economically unfeasible. Future work with integration of the above process improvements can be expected to lead to further gains in economics. However, such work can not be expected to make CMA a less expensive deicer than common road salt.
Resumo:
Although the overall objective for undertaking this project is to help decide on the best way to produce CMA, the tasks to be performed deal primarily with acetic acid itself. The objectives of our part of this project can be restated here: A. Evaluate the cost and composition of potential low-cost fermentation substrates that are available in large quantity at central locations in Iowa. B. Compare the nutritional and physiological properties of a variety of homoacetogenic bacteria relative to acetic acid production, based on information available in the literature. C. Using both of these pools of information, evaluate the possibilities for use of substrates for acetic acid production that are significantly cheaper than the previous sugar, starch hydrolysate or whole corn based studies; also, compare the different acetogens encountered with the most commonly discussed acetogen, Clostridium thermoaceticum; arrive at conclusions on 1-3 of the best agriculture-derived substrates that should be further examined, and on 1-3 of the best organisms to evaluate experimentally. D. Collect experimental data at the tube and fermentor scale on 1-2 of the possibilities in C above. E. Comment on our understanding of acetic acid production possibilities from our perspective as microbiologists, and provide all this above information to Paul Peterschmidt for him to consider for his portion of this report. F. In addition, we would like to point out the possible advantage of examining the use of an agricultural by-product, corn steep liquor, as a direct, non-fermented feedstock for a non-acetic acid deicer.