3 resultados para Pollution induced corrosion

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epoxy coatings have been used on the embedded reinforcing bars of bridge decks since the mid-1970s to mitigate deterioration caused by chloride-induced corrosion. The use of chloride-based deicers became common in the early 1960s and caused corrosion of conventional uncoated bars in bridge decks within 5 to 10 years of commencement of deicer applications. In response to this rapid deterioration, the National Bureau of Standards researched coatings to protect the reinforcement (National Bureau of Standards, 1975), resulting in the development of epoxy-coated reinforcing bars, which were used in bridge decks beginning in 1973. While corrosion-related deterioration has been prevalent on bridge decks with uncoated reinforcing bars in northern climates where the use of deicing salts is common, bridge decks constructed after 1973 with epoxy-coated reinforcing have shown good corrosion resistance with only limited exceptions. On the whole, previous laboratory and field studies regarding the performance of epoxy-coated reinforcing bars are very promising; however, some laboratory and field studies have yielded differing results. In recent years, maintenance personnel for the Iowa Department of Transportation (Iowa DOT) have reportedly performed patch repairs to some bridge decks reinforced with epoxy-coated bars. At one such bridge, the southbound US 65 bridge (Bridge No. 7788.5L065) over the Union Pacific Railroad near Bondurant in Polk County, Iowa, deck repairs were performed by Iowa DOT maintenance personnel in the Spring of 2010, based on our communications regarding this topic with Mr. Gordon Port of the Iowa DOT. These repairs were observed by engineers from the Iowa DOT Office of Bridges and Structures, who reported that significant corrosion was found at a number of epoxy-coated reinforcing bars uncovered during this patch work. These repairs were reportedly performed at spalls and delaminated areas corresponding to cracks over transverse reinforcing bars, and involved careful removal of the concrete from over the bars. Figures 1 through 4 contain photographs provided by Iowa DOT personnel showing the removal process (Figure 1), the conditions encountered (Figures 2 and 3), and close-up views of the corroded reinforcing (Figure 4). As a result of these observations, the Iowa Department of Transportation has requested this study to gain further understanding of the long-term performance of bridge decks reinforced with epoxy-coated bars. The two main objectives of this study are to determine the long-term effectiveness of the epoxy coatings and to determine the potential causes for the deterioration at locations where corrosion has occurred. Wiss, Janney, Elstner Associates, Inc. (WJE) and the Iowa DOT identified eight different bridge decks across Iowa for this study that were constructed using epoxy-coated reinforcing bars. A field investigation consisting of visual inspections, a delamination survey, a concrete cover survey, electrical testing for susceptibility to corrosion, and concrete sampling was conducted within a survey area deemed to be representative of the condition of each bridge deck. Laboratory testing, including chloride ion content testing, characterization of the extracted bars, petrographic examination of the concrete, and carbonation testing, was conducted on the core samples taken from each bridge deck.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several strategies are available to the Iowa Department of Transportation (IaDOT) for limiting deterioration due to chloride-induced corrosion of embedded reinforcing bars in concrete bridge decks. While the method most commonly used throughout the Midwestern United States is to construct concrete bridge decks with fusion-bonded epoxy-coated reinforcing bars, galvanized reinforcing bars are an available alternative. Previous studies of the in situ performance of galvanized reinforcing bars in service in bridge decks have been limited. IaDOT requested that Wiss, Janney, Elstner Associates, Inc. (WJE) perform this study to gain further understanding of the long-term performance of an Iowa bridge deck reinforced with galvanized reinforcing bars. This study characterized the condition of a bridge deck with galvanized reinforcing bars after about 36 years of service and compared that performance to the expected performance of epoxy-coated or uncoated reinforcing bars in similar bridge construction. For this study, IaDOT selected the Iowa State Highway 92 bridge across Drainage Ditch #25 in Louisa County, Iowa (Structure No. 5854.5S092), which was constructed using galvanized reinforcing bars as the main deck reinforcing. The scope of work for this study included: field assessment, testing, and sampling; laboratory testing and analysis; analysis of findings; service life modeling; and preparation of this report. In addition, supplemental observations of the condition of the galvanized reinforcing bars were made during a subsequent project to repair the bride deck.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The corrosion of steel reinforcement in an aging highway infrastructure is a major problem currently facing the transportation engineering community. In the United States alone, maintenance and replacement costs for deficient bridges are measured in billions of dollars. The application of corrosion-resistant steel reinforcement as an alternative reinforcement to existing mild steel reinforced concrete bridge decks has potential to mitigate corrosion problems, due to the fundamental properties associated with the materials. To investigate corrosion prevention through the use of corrosion-resistant alloys, the performance of corrosion resistance of MMFX microcomposite steel reinforcement, a high-strength, high-chromium steel reinforcement, was evaluated. The study consisted of both field and laboratory components conducted at the Iowa State University Bridge Engineering Center to determine whether MMFX reinforcement provides superior corrosion resistance to epoxy-coated mild steel reinforcement in bridge decks. Because definitive field evidence of the corrosion resistance of MMFX reinforcement may require several years of monitoring, strict attention was given to investigating reinforcement under accelerated conditions in the laboratory, based on typical ASTM and Rapid Macrocell accelerated corrosion tests. After 40 weeks of laboratory testing, the ASTM ACT corrosion potentials indicate that corrosion had not initiated for either MMFX or the as-delivered epoxy-coated reinforcement. Conversely, uncoated mild steel specimens underwent corrosion within the fifth week, while epoxy-coated reinforcement specimens with induced holidays underwent corrosion between 15 and 30 weeks. Within the fifth week of testing, the Rapid Macrocell ACT produced corrosion risk potentials that indicate active corrosion for all reinforcement types tested. While the limited results from the 40 weeks of laboratory testing may not constitute a prediction of life expectancy and life-cycle cost, a procedure is presented herein to determine life expectancy and associated life-cycle costs.