11 resultados para Pollutants.

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to the 1972 Clean Water Act, the Environmental Protection Agency (EPA) established a set of regulations for the National Pollutant Discharge Elimination System (NPDES). The purpose of these regulations is to reduce pollution of the nation’s waterways. In addition to other pollutants, the NPDES regulates stormwater discharges associated with industrial activities, municipal storm sewer systems, and construction sites. Phase II of the NPDES stormwater regulations, which went into effect in Iowa in 2003, applies to construction activities that disturb more than one acre of ground. The regulations also require certain communities with Municipal Separate Storm Sewer Systems (MS4) to perform education, inspection, and regulation activities to reduce stormwater pollution within their communities. Iowa does not currently have a resource to provide guidance on the stormwater regulations to contractors, designers, engineers, and municipal staff. The Statewide Urban Design and Specifications (SUDAS) manuals are widely accepted as the statewide standard for public improvements. The SUDAS Design manual currently contains a brief chapter (Chapter 7) on erosion and sediment control; however, it is outdated, and Phase II of the NPDES stormwater regulations is not discussed. In response to the need for guidance, this chapter was completely rewritten. It now escribes the need for erosion and sediment control and explains the NPDES stormwater regulations. It provides information for the development and completion of Stormwater Pollution Prevention Plans (SWPPPs) that comply with the stormwater regulations, as well as the proper design and implementation of 28 different erosion and sediment control practices. In addition to the design chapter, this project also updated a section in the SUDAS Specifications manual (Section 9040), which describes the proper materials and methods of construction for the erosion and sediment control practices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

More than 200 lakes, streams and rivers are on Iowa’s impaired waters list. Pollutants prevent these waters from supporting aquatic life, or from being used for drinking water or for full body recreational contact, like swimming. While improving Iowa’s water quality may seem a daunting task, two southern Iowa lakes show that it can be done.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this review and analysis is to provide a basic understanding of the issues related to worldwide hypoxic zones and the range of economic questions sorely in need of answers. We begin by describing the causes and extent of hypoxic zones worldwide, followed by a review of the evidence concerning ecological effects of the condition and impacts on ecosystem services. We describe what is known about abatement options and cost effective policy design before turning to an analysis of the large, seasonally recurring hypoxic zone in the Gulf of Mexico. We advance the understanding of this major ecological issue by estimating the relationship between pollutants (nutrients) and the areal extent of the hypoxic zone. This “production function” relationship suggests that both instantaneous and legacy contributions of nutrients contribute to annual predictions of the size of the zone, highlighting concerns that ecologists have raised about lags in the recovery of the system and affirms the importance of multiple nutrients as target pollutants. We conclude with a discussion of critical research needs to provide input to policy formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Duck Creek Watershed, the recipient of a 2009 DNR Watershed Management Planning Grant and a focus of an upcoming City of Davenport master plan, is characterized by relatively flat grades and highly impervious areas. Plagued by issues such as high bacteria loads, stream bank erosion and flooding, solving these problems may take generations. The City of Davenport has taken a microwatershed approach to identify the significant contributors to water quality and flooding issues that affect Duck Creek, its tributaries and the surrounding landscape to make inroads into the larger issues. This project is the next phase of a multi-phased project that addresses the microwatershed that includes St Ambrose University. Work here will improve water quality within Duck Creek and address major flooding issues on campus while also reducing downstream flooding. This project will convert an existing parking lot into a green parking area by removing the hard surface and installing below ground facilities for storm water infiltration, detention, and reuse. Permeable pavement, bio­ swales and infiltration areas will be constructed on top of the infiltration facilities. We estimate that this project will capture and treat 1,110,000 gallons (3.5 acre feet) of storm water runoff which accounts to the runoff volume from a 10-year storm event while reducing pollutants by 30-100%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The DMACC Lake Watershed Improvement project will focus on water quality and quantity as well as channel and lake restoration. Roadway, parking lot, and roof drainage from the west and northwest portions of the campus add significant amounts of pollutants and silt to the lake. Severe channel erosion exists along the northern creek channel with exposed cut banks ranging from 2-10 feet in height devoid of vegetation. Heavy lake sedimentation and algae blooms are a result of accumulated sediment being conveyed to the lake. Most sections of the north channel have grades of between 0.5% and 1%. This channel receives large scouring flow velocities. There are no natural riffle or pool systems. There are five areas where these riffle and pool systems may need to be created in order to slow overall channel velocities. This will create a series of rock riffles and a still pool that will mimic the conditions that natural channels tend to create, protecting the channel from undercutting. Multiple practices will need to be implemented to address the pollutant, silt, and channel erosion. Improvements will be specifically tailored to address problems observed within the north channel, on-site drainage from the west and northwest, as well as off-site drainage to the north of the campus and east of Ankeny Blvd (Hwy 69). The result will be improved quality and quantity of site drainage and a channel with a more natural appearance and reduced scour velocities. Sections of the north channel will require grading to establish slopes that can support deep rooted vegetation and to improve maintenance access. Areas with eroded banks will require slope pull back and may also require toe armor protection to stabilize. A constructed wetland will collect and treat runoff from the west on site parking lot, before being discharged into the lake. This project will create educational opportunities to both students and the general public as well as interested parties outside of the local area for how an existing system can be retro fitted for improved watershed quality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

East Okoboji Beach was platted on April 20, 1961 and includes over 90.4 acres with 489 lots. The East Okoboji Beach project includes a complete storm water discharge system, which includes low impact development and reconstruction of the roadways in East Okoboji Beach. The East Okoboji Beach Project is an enormous project that is the first Dickinson County project to retrofit LID practices, lake-friendly storm-water drainage systems and roadway reconstruction throughout an existing sub- division. This cooperative project between DNR, Dickinson County, and EOB landowners includes engineering retention ponds, rain gardens, bio-swales and other LID practices to reduce nutrient and sediment pollutants flowing directly into East Okoboji. The nature of the problem stems back to that original plat where small lots were platted and developed without planning for storm water discharge. There was no consideration of the effects of filling in and developing over the many wetland areas existing in EOB. The scope of the problem covers the entire 90.4 acres in East Okoboji Beach, the DNR owned land and the farmed land to the east. The nature of the problem stems from storm water runoff flowing throughout the watershed and into East Okoboji Beach where it flows down self-made paths and then into East Lake Okoboji. That storm water runoff dumps nutrient and sediment pollutions directly into East Lake Okoboji. The expected result of this project is a new roadway and drainage system constructed with engineering that is intended to protect East Lake Okoboji and the land and homes in East Okoboji Beach. The benefit will be the improvement in the waters and the reduction of the siltation in the East Lake Okoboji.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project brings together rural and urban partners to address the impairment of Miners Creek, a cold water trout stream in Northeast Iowa. It eliminates point source pollution contributions from the City of Guttenberg, decreases non-point source pollution and increases in-stream and near stream habitat in the Miners Creek Watershed. It specifically eliminates sewage and storm water runoff from the City of Guttenberg into Miners Creek; it develops, enhances and preserves wetlands; reduces direct livestock access to the. stream through rotational grazing systems; completes stream bank stabilizatio11 and in-stream habitat creation; targets upland land treatment; and promotes targeted application of continuous CRP and forestry practices. This project recognizes that non-point source pollution improvements could be hampered by point source pollutants ihat inhibit biologic reproduction and survival. It takes appropliate measures to improve all aspects of the stream ecosystem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tuttle Lake Watershed is approximately 125,000 acres and Tuttle Lake itself is 2,270 acres; 5,609 acres of the watershed lies in Iowa territory within Emmet County. It is a sub-watershed of the larger East Fork Des Moines River Watershed, also referred to as Hydrologic Unit Code 07100003. For the purpose of this document, grant money is only being applied for the project implementation in the Iowa portion of the Tuttle Lake Watershed. Tuttle Lake was placed on the 2002 EPA 303(d) Impaired Waters List due to a “very large population of suspended algae and very high levels of inorganic turbidity.” In 2004, the Iowa Department of Natural Resources (IDNR) completed a Total Maximum Daily Load (TMDL) study on Tuttle Lake and found excess sediment and phosphorus levels being the primary pollutants causing the algae and turbidity impairment. Although two point sources were located in Minnesota, IDNR determined that the influx of nutrients is likely from agricultural runoff and re-suspension of lake sediment. The condition of Tuttle Lake is such that the reduction of sediment, nutrients [phosphorus and nitrogen] and pathogens is the primary objective. To achieve that objective, wetlands will be constructed in this first phase to reduce the delivery of nitrogen, phosphorus, and sediment to Tuttle Lake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lower Coldwater and Palmer Creeks in Butler and Floyd counties are subwatersheds of the Cedar River, which provides drinking water to Cedar Rapids, IA. The increasing concentration of nitrate+nitrate in the river is of concern to the Cedar Rapids water utility, and IDNR snapshot monitoring shows Coldwater and Palmer to be significant potential sources (above the 90th percentile for subwatersheds monitored). Both creeks are also on the Iowa Section 303(d) list of impaired waters (aquatic life). Citizens of these predominantly agricultural watersheds organized the Coldwater-Palmer Watershed Improvement Association to deal proactively with nonpoint source pollutants from crop and livestock operations through a performance-based environmental management program. The locally-adapted program implemented by the Coldwater-Palmer watershed council rewards participants for environmental accomplishments - soil quality improvement and nutrient source reduction as measured by accepted, scientifically-based tests and models. Most of the locally­appropriate BMPs used to improve performance are undertaken voluntarily at participants' initiative. WIRB funds will be combined with funding from the Iowa Com Growers Association and significant in-kind support from the Cedar River Watershed Monitoring Coalition, Iowa State University Extension and other partners. The project will result in sustainable reduction in nutrient loading achieved with voluntary participation of a majority of watershed farm operators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project will include the construction of four separate drainage and retention facilities to handle urban runoff that currently flows directly into Lake Storm Lake. These facilities will filter storm water from approximately 503 acres of urban land including two large industrial users Tyson Fresh Meats and Sara Lee Turkey Processing as well as other commercial and residential sections that currently go directly to the lake without filtration. Specifically the project involves the construction of a two cell dry bottomed detention pond system, construction of two rain gardens/bio retention areas, construction of rain gardens along storm water intakes on Highway 7, and construction of a porous rock detention area. The completed project will provide for cleaner water outleting to the fake in an area that has the largest potential for pollutants to enter the lake. This project is being done in conjunction with other watershed improvements including two additional rain gardens already in place and a multi-year dredging effort of Lake Storm Lake that will be starting its fifth year in 2006. Improvements in the rural water shed are also taking place with the help of a watershed coordinator. Some of these projects include buffer strips and filter slips along the waterways in the watershed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this project is to develop a management plan to address the City of Alta’s stormwater runoff. Currently, there is no management plan and the city is growing, so there are increased runoff problems from both residential and industrial sources. A large assortment of pollutants flow from these areas, examples include various forms of sediment, paper, plastic, gravel and metal as well as less visible potentially toxic pollution from lawns, streets, gas stations and other commercial and industrial areas. The goal for this project is to construct two infiltration/detention basins to protect water quality and reduce the peak volume of the City of Alta’s urban runoff. Each basin is designed with two functions: Control gully erosion and surface erosion with detention, while incorporating water quality through infiltration. The downstream erosion control provided by detaining runoff will reduce sediment delivery to Powell Creek and protect downstream agricultural land from urban runoff. The infiltration features designed into the basins will capture pollutants commonly associated with urban stormwater runoff such as: sediment, sand, gravel hydrocarbons, particulate matter, heavy metals, and nutrients.