14 resultados para Plum Island salt marsh
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The Lost Island Lake watershed is located in the prairie pothole region, a region dotted with glacial wetlands and shallow lakes. At 1,180 acres, Lost Island Lake is the state's fifth largest natural lake and its watershed is comprised of nearly 1,000 acres of wetland habitat, including Iowa 's largest natural wetland – Barringer Slough. Unfortunately, Lost Island and its associated wetlands are not functioning to their fullest ecological and water quality potential. In 2002 and 2004, Lost Island Lake was categorized as '·impaired'" on Iowa's Impaired Waters List. Frequent algal blooms and suspended solids drastically increase turbidity levels resulting in its impairment. To investigate these concerns, a two-year study and resulting Water Quality Improvement Plan were completed. The water quality study identified an overabundance of non-native common carp (Cyprinus carpio) in the lake and its surrounding wetlands as a primary cause of impairment. The goal of the Lost Island Lake Watershed Enhancement Project is to restore ecological health to Lost Island Lake and its intricate watershed resulting in improved water quality and a diverse native plant and wildlife community. The purpose of this grant is to obtain funding for the construction of two combination fish barriers and water control structures placed at key locations in the watershed within the Blue Wing Marsh complex. Construction of the fish barriers and water control structures would aid restoration efforts by preventing spawning common carp from entering wetlands in the watershed and establishing the ability to manage water levels in large wetland areas. Water level management is crucial in wetland health and exotic fish control. These two structures are part of a larger construction project that involves a total of four combination fish barriers and water control structures and one additional fish barrier. The entire Lost Island Lake Watershed Enhancement Project is a multi-year project, but the construction phase for the fish barriers and water control structures will be completed before December 31, 2011.
Resumo:
The Federal Highway Administration (FHWA) and the Iowa and Illinois Departments of Transportation (Iowa DOT and IDOT) have identified the Selected Alternative for improving Interstate 74 (I-74) from its southern terminus at Avenue of the Cities (23rd Avenue) in Moline, Illinois to its northern terminus one mile north of the I-74 interchange with 53rd Street in Davenport, Iowa. The Selected Alternative identified and discussed in this Record of Decision is the preferred alternative identified in the Final Environmental Impact Statement (FEIS). The purpose of the proposed improvements is to improve capacity, travel reliability, and safety along I-74 between its termini, and provide consistency with local land use planning goals. The need for the proposed improvements to the I-74 corridor is based on a combination of factors related to providing better transportation service and sustaining economic development.
Resumo:
This research developed and completed a field evaluation of salt distribution equipment. The evaluation provides a direct comparison of three different types of salt spreaders at three different truck speeds and brine rates. A rubber mat was divided into eight sample areas to measure the salt distribution across the lane by each variable combination. A total of 264 samples were processed and measured. These results will support future efforts to target areas of efficiencies specific to salt and brine delivery methods. These results support Iowa Department of Transportation efforts to progress winter maintenance efficiencies and ultimately motorist safety.
Resumo:
This research developed and completed a field evaluation of salt distribution equipment. The evaluation provides a direct comparison of three different types of salt spreaders at three different truck speeds and brine rates. A rubber mat was divided into eight sample areas to measure the salt distribution across the lane by each variable combination. A total of 264 samples were processed and measured. These results will support future efforts to target areas of efficiencies specific to salt and brine delivery methods. These results support Iowa Department of Transportation efforts to progress winter maintenance efficiencies and ultimately motorist safety.
Resumo:
A study was made of the detrimental effects of trace amounts of calcium sulfate (occurring naturally in halite deposits used for deicing) on portland cement concrete pavements. It was found that sulfate introduced as gypsum with sodium chloride in deicing brines can have detrimental effects on portland cement mortar. Concentrations of sulfate as low as 0.5% of the solute rendered the brine destructive. Conditions of brine application were critical to specimen durability. The mechanisms of deterioration were found to be due to pore filling resulting from compound formation and deposition. A field evaluation of deteriorating joints suggests that the sulfate phenomena demonstrated in the laboratory also operates in the field. A preliminary evaluation was made of remedies: limits on sulfates, fly ash admixtures, treatment of existing pavement, and salt treatments. This report gives details of the research objectives, experimental design, field testing, and possible solutions. Recommendations for further study are presented.
Resumo:
Chloride ion penetration through concrete to reinforcing steel is causing the premature deterioration of numerous bridge decks in Iowa. The purpose of the research reported in this paper was to determine whether any of several additives or alternative deicing chemicals could inhibit corrosion of reinforcing steel. The deicers tested were calcium magnesium acetate (CMA), CMA plus NaCl (NaCl: sodium chloride), Quicksalt plus PCI, and CG-90, a polyphosphate solution being developed by Cargill. Two tests were established. First, steel coupons were placed in a 15% solution of a deicer and distilled water to determine which alternative deicer would cause the least amount of corrosion in solution. The coupons were weighed periodically to determine each coupon's weight loss from corrosion. The second test involved ponding a 15% solution of each material on reinforced concrete blocks. Weekly copper-copper sulfate electrical half-cell (CSE) potential readings were taken on each block to determine whether corrosive activity was occurring at the steel surface. When the ponding research was concluded, concrete samples were taken from one of the three blocks ponded with each deicer. The samples were used to determine the chloride ion content at the level of the steel. Results show that all the deicers were less corrosive than NaCl. Only pure CMA, however, significantly inhibited the corrosion of steel embedded in concrete.
Resumo:
The Rock Island Centennial Bridge spanning the Mississippi River between Rock Island, Illinois and Davenport, Iowa was opened to traffic on July 12, 1940. It is a thoroughly modern, four-lane highway bridge, adequate in every respect for present day high speed passenger and transport traffic. The structure is ideally situated to provide rapid transit between the business districts of Rock Island and Davenport and serves not only the local or shuttle traffic in the Tri-City Area, but also heavy through motor travel on U.S. Highways 67 and 150. The Centennial Bridge is notable in several respects. The main spans are box girder rib tied arches, a type rather unusual in America and permitting simplicity in design with pleasing appearance. The Centennial Bridge is the only bridge across the Mississippi providing for four lanes of traffic with separation of traffic in each direction. It is a toll bridge operating alongside a free bridge and has the lowest rates of toll of any toll bridge on the Mississippi River. It was financed entirely by the City of Rock Island with no obligation on the taxpayers; there was no federal or state participation in the financing. But perhaps the most outstanding feature of the new bridge is its great need. A few remarks on the communities served by the new structure, the services rendered, and some statistics on cross-river traffic in the Tri-City Area will emphasize the reasons for constructing the Centennial Bridge.
Resumo:
The Marsh Rainbow Arch Bridge is a patented bridge design by James Barney Marsh, a graduate of Iowa State College of Agriculture and Mechanic Arts (now Iowa State University). Around the turn of the 20th Century, reinforced concrete was introduced in Iowa as an important new bridge construction material. Marsh used the new technology to encased steel truss arches in concrete to produce a sturdy yet esthetic arch bridge. This booklet touches on the important aspects of Marsh's life, business and industrial contributions.
Resumo:
The 1935 Iowa-Illinois Memorial Bridge is being documented at this time to fulfill the requirements of the Memorandum of Agreement regarding the removal of the Iowa-Illinois Memorial Bridge and the Iowana Farms Milk Company Building for the proposed improvements to Interstate 7 4 in Bettendorf, Iowa, and Moline, Illinois.1 The 1959 twin suspension bridge will be removed as well, but it was determined to be ineligible for the National Register of Historic Places. Discussion of the history of the 1959 twin span is included, however, in the current report as part of the overall history of the Iowa-Illinois Memorial Bridge. Fieldwork for the documentation occurred in November 2009 and October 2010 (Fig. 1). Limitations on photography included limited shoreline access on the Illinois side, making good views of the bridge from the south somewhat challenging. Also, photographs on the bridge deck were not possible because of interstate traffic and prohibitions on pedestrian traffic. Within the last few years, online primary sources have proliferated, along with historical materials regarding the Iowa-Illinois Memorial Bridge. Sources available online for this report included numerous historical photographs, as well as historical Davenport, Iowa, and U.S. newspapers that document the bridge planning and construction. Additional primary source material was found at the University of Iowa Libraries, the State Historical Society of Iowa in Iowa City, the Bettendorf Public Library, the Richardson-Sloane Special Collections Center at the Davenport Public Library, and the Iowa State University Special Collections in Ames.
Resumo:
The availability of large quantities of high-quality ground water from the Muscatine Island aquifer has had a tremendous impact upon urban, industrial and agricultural development of this part of Iowa. Although the nonpumping level of water has been lowered significantly near major pumping centers through time, proper management of this water resource can assure a continued supply of water for all competing users. This report provides basic information for long range management. Fold out maps are included.
Resumo:
The specifications for concrete sand in Iowa have been used for many years with very good results. In several locations of the state, it is becoming more difficult to produce concrete sand consistently at a reasonable cost. Both ASTM and AASHTO have specifications for concrete sands that allow a finer, poorer graded sand than the Iowa specification. The ASTM and AASHTO specifications are based on the use of trial mix testing prior to construction. Iowa does not currently use the trial mix procedure.
Resumo:
This is Special Report no. 43 that studies habitat changes and the affects on marsh birds. It covers the history of vegetation and birds of two marshes, Little Wall and Goose Lake, in Iowa for a 5-year period beginning in 1958 at the culmination of a series of drought years in central Iowa.
Resumo:
The Iowa DOT has been using rapid freezing in air and thawing in water to evaluate coarse aggregate durability in concrete since 1962. Earlier research had shown that the aggregate pore system was a major factor in susceptibility to D-cracking rapid deterioration. There are cases were service records show rapid deterioration of concrete containing certain aggregates on heavily salted primary roads and relatively good performance with the same aggregate in secondary pavements with limited use of deicing salt. A five-cycle salt treatment of the coarse aggregate prior to durability testing has yielded durability factors that correlate with aggregate service records on heavily salted primary pavements. X-ray fluorescence analyses have shown that sulfur contents correlate well with aggregate durabilities with higher sulfur contents producing poor durability. Trial additives that affect the salt treatment durabilities would indicate that one factor in the rapid deterioration mechanism is an adverse chemical reaction. The objective· of the current research is to develop a simple method of determining aggregate susceptibility to salt related deterioration. This method of evaluation includes analyses of both the pore system and chemical composition.