15 resultados para Planted Forests
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
A river or stream and its floodplain exist in a state of dynamic equilibrium. This four page report explains the management of floodplain forests.
Resumo:
Iowa’s three million acres of forest land provide environmental benefits to all Iowans in terms of soil erosion control, air quality, and water quality. In 2013, more than 6.5 million trees died. Within those trees there were more than 125 million board feet of wood, compared to 98 million board feet of wood harvested. This level of mortality is the highest level reported from US Forest Service inventories in twenty years. This is disturbing when considering more than 18,000 Iowans are employed in the wood products and manufacturing industry, generating nearly $4 billion in annual sales, more than $900 million in annual payroll and more than $25 million to private woodland owners annually from the sale of timber.
Resumo:
Strong winds, ice, snow and tornadoes are natural occurrences in Iowa forests. When severe, storms can cause extensive damage to forests by uprooting, wounding, bending and breaking trees. Storm damage management should involve a quick assessment to determine the extent of the damage, the need and potential for salvage, and woodland management efforts to return the woodland to a productive status.
Resumo:
Bonding of wood with glue dates back to ancient times but has increased enormously over the past decades. This 2 page report explains the proper way to glue wood.
Resumo:
The oak and oak/hickory forests make up about 46% of Iowa's forestland. Approximately a third of these woodlands have adequate oak regeneration for the woodlands of the future. This report explains what is happening with Iowa's forestland.
Resumo:
Principles and techniques that should be followed to either promote or retard coppice regeneration.
Resumo:
Iowa has several public and private agencies which provide a wide range of forestry services and programs; a brief description of these organizations follows.
Resumo:
This report is on the effects of the tax reforam act of 1986 on timber production activites.
Resumo:
PM2002B: People own wooded acreages and woodlands for a variety of reasons that may include: timber production, firewood production, recreation, wildlife habitat, aesthetics, and alternative forest products. Most of Iowa’s forestland is privately held, and the majority of ownership is fragmented into an average of ten acres (Forest Reserve Survey, 2004). In fact, the average size of an individual forest or woodlot ownership has been steadily declining for several years due in part to population growth, urban sprawl, and changes in land ownership. Studies indicate that the probability of a sustainable woodlot decreases as the population increases. At the same time, most woodlot owners want to be good stewards and protect and enhance the forest that they own. To achieve this goal, careful forest planning and management is required especially when managing the land for multiple objectives.
Resumo:
Vigorous and Healthy woodlands in Iowa have the unique distinction of being able to provide a wealth of benefits for the landowner and residents of the state. Benefits from a healthy forest include timber and wood resources, watershed protection, fragile site protection, wildlife and bird habitat, aesthetics and beauty, and recreational opportunities.
Resumo:
The ongoing growth of corn-based ethanol production raises some fundamental questions about what impact continued growth will have on U.S. and world agriculture. Estimates of the long-run potential for ethanol production can be made by calculating the corn price at which the incentive to expand ethanol production disappears. Under current ethanol tax policy, if the prices of crude oil, natural gas, and distillers grains stay at current levels, then the break-even corn price is $4.05 per bushel. A multi-commodity, multi country system of integrated commodity models is used to estimate the impacts if we ever get to $4.05 corn. At this price, corn-based ethanol production would reach 31.5 billion gallons per year, or about 20% of projected U.S. fuel consumption in 2015. Supporting this level of production would require 95.6 million acres of corn to be planted. Total corn production would be approximately 15.6 billion bushels, compared to 11.0 billion bushels today. Most of the additional corn acres come from reduced soybean acreage. Wheat markets would adjust to fulfill increased demand for feed wheat. Corn exports and production of pork and poultry would all be reduced in response to higher corn prices and increased utilization of corn by ethanol plants. These results should not be viewed as a prediction of what will eventually materialize. Rather, they indicate a logical end point to the current incentives to invest in corn-based ethanol plants.
Resumo:
Advance planning, proper species selection, site preparation, careful handling of tree seedlings, and a good weed control program will help assure a successful tree planting. A commitment to plant with care, is an important first step that leads to successful establishment of tree and shrub seedlings.
Resumo:
Grass and weeds are a problem because they grow faster and are often taller than young seedlings. They compete with your seedlings for the limited moisture, nutrients, light, and space. Grasses and broadleaf weeds may kill your seedlings. At the very least, they keep seedlings from growing as quickly and vigorously as they would without competition. In addition, a thick stand of grass or weeds next to your seedlings provides habitat for rabbits and rodents who can girdle or cut off your seedlings. The only way to avoid these problems are to control the grass and weeds that cause them.
Resumo:
We provide estimates of the costs associated with inducing substantial conversion of land from production of traditional crops to switchgrass. Higher traditional crop prices due to increased demand for corn from the ethanol industry has increased the relative advantage that row crops have over switchgrass. Results indicate that farmers will convert to switchgrass production only with significant conversion subsidies. To examine potential environmental consequences of conversion, we investigate three stylized landscape usage scenarios, one with an entire conversion of a watershed to switchgrass production, a second with the entire watershed planted to continuous corn under a 50% removal rate of the biomass, and a third scenario that places switchgrass on the most erodible land in the watershed and places continuous corn on the least erodible. For each of these illustrative scenarios, the watershed-scale Soil and Water Assessment Tool (SWAT) hydrological model (Arnold et al., 1998; Arnold and Forher, 2005) is used to evaluate the effect of these landscape uses on sediment and nutrient loadings in the Maquoketa Watershed in eastern Iowa.
Resumo:
Projections of U.S. ethanol production and its impacts on planted acreage, crop prices, livestock production and prices, trade, and retail food costs are presented under the assumption that current tax credits and trade policies are maintained. The projections were made using a multi-product, multi-country deterministic partial equilibrium model. The impacts of higher oil prices, a drought combined with an ethanol mandate, and removal of land from the Conservation Reserve Program (CRP) relative to baseline projections are also presented. The results indicate that expanded U.S. ethanol production will cause long-run crop prices to increase. In response to higher feed costs, livestock farmgate prices will increase enough to cover the feed cost increases. Retail meat, egg, and dairy prices will also increase. If oil prices are permanently $10-per-barrel higher than assumed in the baseline projections, U.S. ethanol will expand significantly. The magnitude of the expansion will depend on the future makeup of the U.S. automobile fleet. If sufficient demand for E-85 from flex-fuel vehicles is available, corn-based ethanol production is projected to increase to over 30 billion gallons per year with the higher oil prices. The direct effect of higher feed costs is that U.S. food prices would increase by a minimum of 1.1% over baseline levels. Results of a model of a 1988-type drought combined with a large mandate for continued ethanol production show sharply higher crop prices, a drop in livestock production, and higher food prices. Corn exports would drop significantly, and feed costs would rise. Wheat feed use would rise sharply. Taking additional land out of the CRP would lower crop prices in the short run. But because long-run corn prices are determined by ethanol prices and not by corn acreage, the long-run impacts on commodity prices and food prices of a smaller CRP are modest. Cellulosic ethanol from switchgrass and biodiesel from soybeans do not become economically viable in the Corn Belt under any of the scenarios. This is so because high energy costs that increase the prices of biodiesel and switchgrass ethanol also increase the price of cornbased ethanol. So long as producers can choose between soybeans for biodiesel, switchgrass for ethanol, and corn for ethanol, they will choose to grow corn. Cellulosic ethanol from corn stover does not enter into any scenario because of the high cost of collecting and transporting corn stover over the large distances required to supply a commercial-sized ethanol facility.