4 resultados para Plant population density
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
As a result of higher seed prices, improved planters and weed management programs, soybean growers are more aware of the importance of seeding rates and optimal plant populations at harvest. A harvest population of approximately 100,000 uniformly distributed plants per acre will maximize economic return in Iowa regardless of row spacing. There appears to be no economic advantage to harvest populations greater than, or less than, 100,000 plants per acre. Economics, however, should be considered carefully when striving for higher harvest populations since seed is expensive. Timely management, such as weed management, is more critical at low plant populations.
Resumo:
Planting soybeans in rows narrower than 30 inches can improve yield potential. Most Midwest research documents that narrow rows (less than 30 inches) yield greater than wide rows (30 inches or greater). On average in Iowa a 4.5 bu./acre yield increase can be expected using 15-inch row spacing, compared to 30-inch row spacing. These data have been fairly consistent for the past 20 years.
Resumo:
As a result of higher seed prices, improved planters and weed management programs, soybean growers are more aware of the importance of seeding rates and optimal plant populations at harvest. A harvest population of approximately 100,000 uniformly distributed plants per acre will maximize economic return in Iowa regardless of row spacing. There appears to be no economic advantage to harvest populations greater than, or less than, 100,000 plants per acre. Economics, however, should be considered carefully when striving for higher harvest populations since seed is expensive. Timely management, such as weed management, is more critical at low plant populations.
Resumo:
Highway noise is one of the most pressing of the surface characteristics issues facing the concrete paving industry. This is particularly true in urban areas, where not only is there a higher population density near major thoroughfares, but also a greater volume of commuter traffic (Sandberg and Ejsmont 2002; van Keulen 2004). To help address this issue, the National Concrete Pavement Technology Center (CP Tech Center) at Iowa State University (ISU), Federal Highway Administration (FHWA), American Concrete Pavement Association (ACPA), and other organizations have partnered to conduct a multi-part, seven-year Concrete Pavement Surface Characteristics Project. This document contains the results of Part 1, Task 2, of the ISU-FHWA project, addressing the noise issue by evaluating conventional and innovative concrete pavement noise reduction methods. The first objective of this task was to determine what if any concrete surface textures currently constructed in the United States or Europe were considered quiet, had long-term friction characteristics, could be consistently built, and were cost effective. Any specifications of such concrete textures would be included in this report. The second objective was to determine whether any promising new concrete pavement surfaces to control tire-pavement noise and friction were in the development stage and, if so, what further research was necessary. The final objective was to identify measurement techniques used in the evaluation.