6 resultados para Perfect equilibria
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Organic producers have limited methods of avoiding plant diseases that result in cosmetic damage to produce. Therefore, the appearance of organic produce is often less than perfect. We use an experimental auction to investigate how cosmetic damage affects consumers’ willingness to pay for organic apples. We find that 75% of the participants are willing to pay more for organic than for conventional apples given identical appearance. However, at the first sight of any imperfection in the appearance of the organic apples, this segment is significantly reduced. Furthermore, we find that there is a significant effect of interaction between cosmetic damage and product methods. Even though most consumers say they buy organic products to avoid pesticides, we find that cosmetic damage has a larger impact on the willingness to pay for organic apples than for conventional apples.
Resumo:
This paper explores the effects of a standard influencing care choice. Firm(s) may increase the probability of offering safe products by incurring a cost. Under duopoly, they compete either in prices or in quantities. Under perfect information about safety for consumers, the selected standard that corrects a safety underinvestment is always compatible with competition. Safety over investment only emerges under competition in quantities and relatively low values of the cost. Under imperfect information about safety for consumers, the standard leads to a monopoly situation. However, for relatively large values of the cost, a standard cannot impede the market failure coming from the lack of information.
Resumo:
Bypass traffic and experience a “scenic” change of pace by traveling along Iowa’s scenic byways. Iowa’s eight state-designated and two nationally-designated scenic byways are a great way to experience Iowa’s natural beauty, history and culture. Stop to smell the wildflowers or listen to the songbirds, or follow an impulse to take a side trip to one of the many attractions and countryside hamlets. A camera is a must for these postcard-perfect vistas. You never know when you will encounter a bald eagle along the Mississippi River, rare plants and animals in the Loess Hills, or the exceptional architecture of unique barns, churches and other buildings along the routes. This brochure identifies each scenic byway route and the approximate mileage in terms of hard-surfaced and gravel roadways. Estimated driving time ranges from one and one-half hour to three and one-half hours, depending on your speed and the number of stops. These routes are offered for those of you who want to relax and stop often to enjoy the sights.
Resumo:
Vibration-based damage identification (VBDI) techniques have been developed in part to address the problems associated with an aging civil infrastructure. To assess the potential of VBDI as it applies to highway bridges in Iowa, three applications of VBDI techniques were considered in this study: numerical simulation, laboratory structures, and field structures. VBDI techniques were found to be highly capable of locating and quantifying damage in numerical simulations. These same techniques were found to be accurate in locating various types of damage in a laboratory setting with actual structures. Although there is the potential for these techniques to quantify damage in a laboratory setting, the ability of the methods to quantify low-level damage in the laboratory is not robust. When applying these techniques to an actual bridge, it was found that some traditional applications of VBDI methods are capable of describing the global behavior of the structure but are most likely not suited for the identification of typical damage scenarios found in civil infrastructure. Measurement noise, boundary conditions, complications due to substructures and multiple material types, and transducer sensitivity make it very difficult for present VBDI techniques to identify, much less quantify, highly localized damage (such as small cracks and minor changes in thickness). However, while investigating VBDI techniques in the field, it was found that if the frequency-domain response of the structure can be generated from operating traffic load, the structural response can be animated and used to develop a holistic view of the bridge’s response to various automobile loadings. By animating the response of a field bridge, concrete cracking (in the abutment and deck) was correlated with structural motion and problem frequencies (i.e., those that cause significant torsion or tension-compression at beam ends) were identified. Furthermore, a frequency-domain study of operational traffic was used to identify both common and extreme frequencies for a given structure and loading. Common traffic frequencies can be compared to problem frequencies so that cost-effective, preventative solutions (either structural or usage-based) can be developed for a wide range of IDOT bridges. Further work should (1) perfect the process of collecting high-quality operational frequency response data; (2) expand and simplify the process of correlating frequency response animations with damage; and (3) develop efficient, economical, preemptive solutions to common damage types.
Resumo:
Roughly 242 million used tires are generated annually in the United States. Many of these tires end up being landfilled or stockpiled. The stockpiles are unsightly, unsanitary, and also collect water which creates the perfect breeding ground for mosquitoes, some of which carry disease. In an effort to reduce the number of used tire stockpiles the federal government mandated the use of recycled rubber in federally funded, state implemented department of transportation (DOT) projects. This mandate required the use of recycled rubber in 5% of the asphalt cement concrete (ACC) tonnage used in federally funded projects in 1994, increasing that amount by 5% each year until 20% was reached, and remaining at 20% thereafter. The mandate was removed as part of the appropriations process in 1994, after the projects in this research had been completed. This report covers five separate projects that were constructed by the Iowa Department Of Transportation (DOT) in 1991 and 1992. These projects had all had some form of rubber incorporated into their construction and were evaluated for 5 years. The conclusion of the study is that the pavements with tire rubber added performed essentially the same as conventional ACC pavement. An exception was the use of rubber chips in a surface lift. This performed better at crack control and worse with friction values than conventional ACC. The cost of the pavement with rubber additive was significantly higher. As a result, the benefits do not outweigh the costs of using this recycled rubber process in pavements in Iowa.
Resumo:
In conventional construction practices, a longitudinal joint is sawed in a PCC (Portland Cement Concrete) pavement to control concrete shrinkage cracking between two lanes of traffic. Sawing a joint in hardened concrete is an expensive and time consuming operation. The longitudinal joint is not a working joint (in comparison to a transverse joint) as it is typically tied with a tie bar at 30 inch spacing. The open joint reservoir, left by the saw blade, typically is filled or sealed with a durable crack sealant to keep incompressibles and water from getting into the joint reservoir. An experimental joint forming knife has been developed. It is installed under the paving machine to form the longitudinal joint in the wet concrete as a part of the paving process. Through this research method, forming a very narrow longitudinal joint during the paving process, two conventional paving operations can be eliminated. Joint forming eliminates the need of the joint sawing operation in the hard concrete, and as the joint that is formed does not leave a wide-open reservoir, but only a hairline crack, it does not need the joint filling or sealing operation. Therefore, the two conventional longitudinal joint sawing and sealing operations are both being eliminated by this innovation. A laboratory scale prototype joint forming knife was built and tested, initially forming joints in small concrete beams. The results were positive so the method was proposed for field testing. Initial field tests were done in the construction season of 2001, limited to one paving contractor. A number of modifications were made to the knife throughout the field tests. About 3000 feet of longitudinal joint was formed in 2001. Additional testing was done in the 2002 construction season, working with the same contractor. About 150,000 feet of longitudinal joint was formed in 2002. Evaluations of the formed joints were done to determine longitudinal joint hairline crack development rate and appearance. Additional tests will be done in the next construction season to improve or perfect the longitudinal joint forming technique.