4 resultados para Particle mixing

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proper storage practices are critical to protect materials from intermingling, contamination, or degradation, and to maintain consistent aggregate gradation throughout a project. Concrete Paving Workforce Reference no.1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soils consist largely of mineral particles in a wide range of sizes. It is advantageous to assign names, such as "sand", etc., to describe particles which lie between certain size limits. These names are convenient to use and give more information than merely stating that the particles fit certain size limitations. Many systems of particle-size limits have been proposed and used, and have many discrepancies. For example, depending on the system used, a term such as "sand" may designate very different materials. Since no clear-cut divisions can be made between members of a continuous series all particle-size limit schemes are arbitrary. The originators of the various systems were influenced by many factors: convenience of investigation, methods and equipment available for analysis, ease of presenting data, convenience for statistical analysis, previous work, and systems in use. The complications were further compounded because of widely varying fields of endeavor with varying background, outlook, and goals. For example, many inconsistencies are found in engineering depending on whether the size limits are used to differentiate soils, or characterize aggregates for concrete. Some of the investigators have tried to place limits to correspond with the various properties of the soil components; others were more interested in the ease and convenience of obtaining and presenting data. The purpose of this paper is to review many of the systems which have been proposed and used, and if possible, to suggest what may have been the reasons for the selection of the particle-size limits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a result of forensic investigations of problems across Iowa, a research study was developed aimed at providing solutions to identified problems through better management and optimization of the available pavement geotechnical materials and through ground improvement, soil reinforcement, and other soil treatment techniques. The overall goal was worked out through simple laboratory experiments, such as particle size analysis, plasticity tests, compaction tests, permeability tests, and strength tests. A review of the problems suggested three areas of study: pavement cracking due to improper management of pavement geotechnical materials, permeability of mixed-subgrade soils, and settlement of soil above the pipe due to improper compaction of the backfill. This resulted in the following three areas of study: (1) The optimization and management of earthwork materials through general soil mixing of various select and unsuitable soils and a specific example of optimization of materials in earthwork construction by soil mixing; (2) An investigation of the saturated permeability of compacted glacial till in relation to validation and prediction with the Enhanced Integrated Climatic Model (EICM); and (3) A field investigation and numerical modeling of culvert settlement. For each area of study, a literature review was conducted, research data were collected and analyzed, and important findings and conclusions were drawn. It was found that optimum mixtures of select and unsuitable soils can be defined that allow the use of unsuitable materials in embankment and subgrade locations. An improved model of saturated hydraulic conductivity was proposed for use with glacial soils from Iowa. The use of proper trench backfill compaction or the use of flowable mortar will reduce the potential for developing a bump above culverts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-stage mixing process for concrete involves mixing a slurry of cementitious materials and water, then adding the slurry to coarse and fine aggregate to form concrete. Some research has indicated that this process might facilitate dispersion of cementitious materials and improve cement hydration, the characteristics of the interfacial transition zone (ITZ) between aggregate and paste, and concrete homogeneity. The goal of the study was to find optimal mixing procedures for production of a homogeneous and workable mixture and quality concrete using a two-stage mixing operation. The specific objectives of the study are as follows: (1) To achieve optimal mixing energy and time for a homogeneous cementitious material, (2) To characterize the homogeneity and flow property of the pastes, (3) To investigate effective methods for coating aggregate particles with cement slurry, (4) To study the effect of the two-stage mixing procedure on concrete properties, (5) To obtain the improved production rates. Parameters measured for Phase I included: heat of hydration, maturity, and rheology tests were performed on the fresh paste samples, and compressive strength, degree of hydration, and scanning electron microscope (SEM) imaging tests were conducted on the cured specimens. For Phases II and III tests included slump and air content on fresh concrete and compressive and tensile strengths, rapid air void analysis, and rapid chloride permeability on hardened concrete.