3 resultados para POSITIVE SOLUTION
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This phase of the electronic collaboration project involved two major efforts: 1) implementation of AEC Sync (formerly known as Attolist), a web-based project management system (WPMS), on the Broadway Viaduct Bridge Project and the Iowa Falls Arch Bridge Project and 2) development of a web-based project management system for bridge and highway construction projects with less than $10 million in contract value. During the previous phase of this project (fiscal year 2010), the research team helped with the implementation process for AEC Sync and collected feedback from the Broadway Viaduct project team members before the start of the project. During the 2011 fiscal year, the research team collected the post-project surveys from the Broadway Viaduct project members and compared them to the pre-project survey results. The results of the AEC Sync implementation on the Broadway project were positive. The project members were satisfied with the performance of the AEC Sync software and how it facilitated document management and its transparency. In addition, the research team distributed, collected, and analyzed the pre-project surveys for the Iowa Falls Arch Bridge Project. The implementation of AEC Sync for the Iowa Falls Arch Bridge Project appears to also be positive, based on the pre-project surveys. The fourth phase of this electronic collaboration project involves the identification and implementation of a WPMS solution for smaller bridge and highway projects. The workflow for the shop drawing approval process for sign truss projects was documented and used to identify possible WPMS solutions. After testing and evaluating several WPMS solutions, Microsoft SharePoint Foundation’s site pages were selected to be pilot-tested on sign truss projects. Due to the limitation on the SharePoint license that the Iowa Department of Transportation (DOT) has, a file transfer protocol (FTP) site will be developed alongside this site to allow contractors to upload shop drawings to the Iowa DOT. The SharePoint site pages are expected to be ready for implementation during the 2012 calendar year.
Resumo:
This research project was directed at laboratory and field evaluation of sodium montmorillonite clay (Bentonite) as a dust palliative for limestone surfaced secondary roads. It was postulated that the electrically charged surfaces (negative) of the clay particles could interact with the charged surfaces (positive) of the limestone and act as a bonding agent to agglomerate fine (-#200) particulates, and also to bond the fine particulates to larger (+#200) limestone particles. One mile test roads were constructed in Tama, Appanoose, and Hancock counties in Iowa using Bentonite treatment levels (by weight of aggregate) ranging from 3.0 to 12.0%. Construction was accomplished by adding dry Bentonite to the surfacing material and then dry road mixing. The soda ash/water solution (dispersing agent) was spray applied and the treated surfacing material wet mixed by motor graders to a consistency of 2 to 3 inch slump concrete. Two motor graders working in tandem provided rapid mixing. Following wet mixing the material was surface spread and compacted by local traffic. Quantitative and qualitative periodic evaluations and testing of the test roads was conducted with respect to dust generation, crust development, roughness, and braking characteristics. As the Bentonite treatment level increased dust generation decreased. From a cost/benefit standpoint, an optimum level of treatment is about 8% (by weight of aggregate). For roads with light traffic, one application at this treatment level resulted in a 60-70% average dust reduction in the first season, 40-50% in the second season, and 20-30% in the third season. Crust development was rated at two times better than untreated control sections. No discernible trend was evident with respect to roughness. There was no evident difference in any of the test sections with respect to braking distance and braking handling characteristics, under wet surface conditions compared to the control sections. Chloride treatments are more effective in dust reduction in the short term (3-4 months). Bentonite treatment is capable of dust reduction over the long term (2-3 seasons). Normal maintenance blading operations can be used on Bentonite treated areas. Soda ash dispersed Bentonite treatment is estimated to be more than twice as cost effective per percent dust reduction than conventional chloride treatments, with respect to time. However, the disadvantage is that there is not the initial dramatic reduction in dust generation as with the chloride treatment. Although dust is reduced significantly after treatment there is still dust being generated. Video evidence indicates that the dust cloud in the Bentonite treated sections does not rise as high, or spread as wide as the cloud in the untreated section. It also settles faster than the cloud in the untreated section. This is considered important for driving safety of following traffic, and for nuisance dust invasion of residences and residential areas. The Bentonite appears to be functioning as a bonding agent.
Resumo:
This phase of the research project involved two major efforts: (1) Complete the implementation of AEC-Sync (formerly known as Attolist) on the Iowa Falls Arch Bridge project and (2) develop a web-based project management system (WPMS) for projects under $10 million. For the first major effort, AEC-Sync was provided for the Iowa Department of Transportation (DOT) in a software as a service agreement, allowing the Iowa DOT to rapidly implement the solution with modest effort. During the 2010 fiscal year, the research team was able to help with the implementation process for the solution. The research team also collected feedback from the Broadway Viaduct project team members before the start of the project and implementation of the solution. For the 2011 fiscal year, the research team collected the post-project surveys from the Broadway Viaduct project members and compared them to the pre-project survey results. The result of the AEC-Sync implementation in the Broadway Viaduct project was a positive one. The project members were satisfied with the performance of AEC-Sync and how it facilitated document management and transparency. In addition, the research team distributed, collected, and analyzed the pre-project surveys for the Iowa Falls Arch Bridge project. During the 2012 fiscal year, the research team analyzed the post-project surveys for the Iowa Falls Arch Bridge project AEC-Sync implementation and found a positive outcome when compared to the pre-project surveys. The second major effort for this project involved the identification and implementation of a WPMS solution for smaller bridge and highway projects. During the 2011 fiscal year, Microsoft SharePoint was selected to be implemented on these smaller highway projects. In this year, workflows for the shop/working drawings for the smaller highway projects specified in Section 1105 of the Iowa DOT Specifications were developed. These workflows will serve as the guide for the development of the SharePoint pages. In order to implement the Microsoft SharePoint pages, the effort of an integrated team proved to be vital because it brought together the expertise required from researchers, programmers, and webpage developers to develop the SharePoint pages.