6 resultados para P-HEMT and HEMT functional materials
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
As a result of forensic investigations of problems across Iowa, a research study was developed aimed at providing solutions to identified problems through better management and optimization of the available pavement geotechnical materials and through ground improvement, soil reinforcement, and other soil treatment techniques. The overall goal was worked out through simple laboratory experiments, such as particle size analysis, plasticity tests, compaction tests, permeability tests, and strength tests. A review of the problems suggested three areas of study: pavement cracking due to improper management of pavement geotechnical materials, permeability of mixed-subgrade soils, and settlement of soil above the pipe due to improper compaction of the backfill. This resulted in the following three areas of study: (1) The optimization and management of earthwork materials through general soil mixing of various select and unsuitable soils and a specific example of optimization of materials in earthwork construction by soil mixing; (2) An investigation of the saturated permeability of compacted glacial till in relation to validation and prediction with the Enhanced Integrated Climatic Model (EICM); and (3) A field investigation and numerical modeling of culvert settlement. For each area of study, a literature review was conducted, research data were collected and analyzed, and important findings and conclusions were drawn. It was found that optimum mixtures of select and unsuitable soils can be defined that allow the use of unsuitable materials in embankment and subgrade locations. An improved model of saturated hydraulic conductivity was proposed for use with glacial soils from Iowa. The use of proper trench backfill compaction or the use of flowable mortar will reduce the potential for developing a bump above culverts.
Resumo:
This manual provides a set of procedural rules and regulations for use in functionally classifying all roads and streets in Iowa according to the character of service they are intended to provide. Functional classification is a requirement of House File 394 (Functional Highway Classification Bill) enacted by the 63rd General Assembly of the Iowa Legislature. Functional classification is defined in this Bill as: "The grouping of roads and streets into systems according to the character of service they will be expected to provide, and the assignment of jurisdiction over each class to the governmental unit having primary interest in each type of service."
Resumo:
This manual provides a set of procedural rules and regulations for use in functionally classifying all roads and streets in Iowa according to the character of service they are intended to provide. Functional classification is a requirement of the 1973 Code of Iowa (Chapter 306) as amended by Senate File 1062 enacted by the 2nd session of the 65th General Assembly of Iowa. Functional classification is defined as the grouping of roads and streets into systems according to the character of service they will be expected to provide, and the assignment of jurisdiction over each class to the governmental unit having primary interest in each type of service. Stated objectives of the legislation are: "Functional classification will serve the legislator by providing an equitable basis for determination of proper source of tax support and providing for the assignment of financial resources to the governmental unit having responsibility for each class of service. Functional classification promotes the ability of the administrator to effectively prepare and carry out long range programs which reflect the transportation needs of the public." All roads and streets in legal existence will be classified. Instructions are also included in this manual for a continuous reporting to the Highway Commission of changes in classification and/or jurisdiction resulting from new construction, corporation line changes, relocations, and deletions. This continuous updating of records is absolutely essential for modern day transportation planning as it is the only possible way to monitor the status of existing road systems, and consequently determine adequacy and needs with accuracy.
Resumo:
State University Audit Report
Resumo:
The function of dowel bars is the transfer of a load across the transverse joint from one pavement slab to the adjoining slab. In the past, these transfer mechanisms have been made of steel. However, pavement damage such as loss of bonding, deterioration, hollowing, cracking and spalling start to occur when the dowels begin to corrode. A significant amount of research has been done to evaluate alternative types of materials for use in the reinforcement of concrete pavements. Initial findings have indicated that stainless steel and fiber composite materials possess properties, such as flexural strength and corrosion resistance, that are equivalent to the Department of Transportation specifications for standard steel, 1 1/2 inch diameter dowel bars. Several factors affect the load transfer of dowels; these include diameter, alignment, grouting, bonding, spacing, corrosion resistance, joint spacing, slab thickness and dowel embedment length. This research is directed at the analysis of load transfer based on material type and dowel spacing. Specifically, this research is directed at analyzing the load transfer characteristics of: (a) 8-inch verses 12-inch spacing, and (b) alternative dowel material compared to epoxy coated steel dowels, will also be analyzed. This report documents the installation of the test sections, placed in 1997. Dowel material type and location are identified. Construction observations and limitations with each dowel material are shown.
Resumo:
This bulletin is a compilation of the reports on completed research done for the Iowa State Highway Research Board Project HR-1, "The Loess and Glacial Till Materials of Iowa; an Investigation of Their Physical and Chemical Properties and Techniques for Processing Them to Increase Their All-Weather Stability for Road Construction.” The research, started in 1950, was done by the Iowa Engineering Experiment Station under its project 283-S. The project was supported by funds from the Iowa State Highway Commission.