13 resultados para Objective measure
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The benchmark objectives for Program Year 2002 are designed to improve Iowa's basic skills literacy program in those instructional programs, educational functioning levels, and follow-up categories which did not achieve the negotiated benchmark levels for Program Year 2001. The instructional programs, educational functioning levels and follow-up categories in which the attained benchmarks met or exceeded the negotiated benchmarks for Program Year 2001 should not be allowed to fall below the Program Year 2001 levels for Program Year 2002.
Resumo:
Recognize facilities that provide quality of life and appropriate access to medical assistance program beneficiaries in a cost-effective manner. Each measure is intended to represent nursing facility characteristics in each of the four domains.
Resumo:
The overarching goal of this project was to identify and evaluate cognitive and behavioral indices that are sensitive to sleep deprivation and may help identify commercial motor vehicle drivers (CMV) who are at-risk for driving in a sleep deprived state and may prove useful in field tests administered by officers. To that end, we evaluated indices of driver physiognomy (e.g., yawning, droopy eyelids, etc.) and driver behavioral/cognitive state (e.g. distracted driving) and the sensitivity of these indices to objective measures of sleep deprivation. The measures of sleep deprivation were sampled on repeated occasions over a period of 3.5-months in each of 44 drivers diagnosed with Obstructive Sleep Apnea (OSA) and 22 controls (matched for gender, age within 5 years, education within 2 years, and county of residence for rural vs. urban driving). Comprehensive analyses showed that specific dimensions of driver physiognomy associated with sleepiness in previous research and face-valid composite scores of sleepiness did not: 1) distinguish participants with OSA from matched controls; 2) distinguish participants before and after PAP treatment including those who were compliant with their treatment; 3) predict levels of sleep deprivation acquired objectively from actigraphy watches, not even among those chronically sleep deprived. Those findings are consistent with large individual differences in driver physiognomy. In other words, when individuals were sleep deprived as confirmed by actigraphy watch output they did not show consistently reliable behavioral markers of being sleep deprived. This finding held whether each driver was compared to him/herself with adequate and inadequate sleep, and even among chronically sleep deprived drivers. The scientific evidence from this research study does not support the use of driver physiognomy as a valid measure of sleep deprivation or as a basis to judge whether a CMV driver is too fatigued to drive, as on the current Fatigued Driving Evaluation Checklist.. Fair and accurate determinations of CMV driver sleepiness in the field will likely require further research on alternative strategies that make use of a combination of information sources besides driver physiognomy, including work logs, actigraphy, in vehicle data recordings, GPS data on vehicle use, and performance tests.
Resumo:
The objective of this research was to evaluate the quality (angularity, mortar strengths and alkali-silica reactivity) of fine aggregate for Iowa portland cement concrete (PCC) pavements. Sands were obtained from 30 sources representative of fine aggregate across Iowa. The gradation, fineness modulus and mortar strengths were determined for all sands. Angularity was evaluated using a new National Aggregate Association (NAA) flow test. The NAA uncompacted void values are significantly affected by the percent of crushed particles and are a good measure of fine aggregate angularity. The alkali-silica reactivity of Iowa sands was measured by the ASTM P214 test. By P214 many Iowa sands were identified as being reactive while only two were innocuous. More research is needed on P214 because pavement performance history has shown very little alkali-silica reactivity deterioration of pavement. Six of the sands tested by P214 were evaluated using the Canadian Prism Test. None were identified as being reactive by the Canadian Prism Test.
Resumo:
The Iowa Department of Transportation (Iowa DOT) through the Highway Division is responsible for the design, construction and maintenance of roadways that will provide a high level of serviceability to the motorist. First, the motorist expects to be able to get where he wants to go, but now he also demands a minimum level of comfort. In the construction of new roadways, the public is quick to express dissatisfaction with rough pavements. The Highway Division of the Iowa DOT (formerly Iowa State Highway Commission) has a specification which requires a "smooth-riding surface". For over 40 years, new portland cement concrete (pcc) pavement has been checked with a 10-foot rolling straightedge. The contractor is required to grind, saw or mill off all high spots that deviate more than 1/8" from the 10-foot straight line. Unfortunately, there are instances where a roadway that will meet the above criteria does not provide a "smooth-riding surface". The roadway may have monger undulations (swales) that result in an undesirable ride. The objective of this project was to develop a repeatable, reliable time stable, lightweight test unit to measure the riding quality of pcc pavement at normal highway speed the day after construction.
Resumo:
"Metric Training For The Highway Industry", HR-376 was designed to produce training materials for the various divisions of the Iowa DOT, local government and the highway construction industry. The project materials were to be used to introduce the highway industry in Iowa to metric measurements in their daily activities. Five modules were developed and used in training over 1,000 DOT, county, city, consultant and contractor staff in the use of metric measurements. The training modules developed deal with the planning through operation areas of highway transportation. The materials and selection of modules were developed with the aid of an advisory personnel from the highway industry. Each module is design as a four hour block of instruction and a stand along module for specific types of personnel. Each module is subdivided into four chapters with chapter one and four covering general topics common to all subjects. Chapters two and three are aimed at hands on experience for a specific group and subject. This module includes: Module 1 - Basic Introduction to the Use of International Units of Measurement. This module is designed for use by all levels of personnel, primarily office staff, and provides a basic background in the use of metric measurements in both written and oral communications.
Resumo:
The objective of this research project was to identify a method of reducing the adverse effect of transverse cracking and to improve the performance of asphalt pavement. The research involved three variations from the contractor's planned operation. Briefly, they were: (1) use of another asphalt cement; (2) saw and seal transverse joints; and (3) increased asphalt cement content. The following conclusions were reached: (1) an improved sealant or sealing procedure is needed if transverse joints are to be used in asphalt pavements; (2) the penetration-viscosity number (PVN) is an effective measure of the temperature susceptibility of asphalt cements; (3) the use of a high temperature susceptible asphalt cement produced severe transverse cracking; (4) the use of asphalt cements with low temperature susceptibility will reduce the frequency of transverse cracking; and (5) an increased asphalt cement content in the asphalt treated base will reduce the frequency of transverse cracking.
Resumo:
Asphalt pavements suffer various failures due to insufficient quality within their design lives. The American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG) has been proposed to improve pavement quality through quantitative performance prediction. Evaluation of the actual performance (quality) of pavements requires in situ nondestructive testing (NDT) techniques that can accurately measure the most critical, objective, and sensitive properties of pavement systems. The purpose of this study is to assess existing as well as promising new NDT technologies for quality control/quality assurance (QC/QA) of asphalt mixtures. Specifically, this study examined field measurements of density via the PaveTracker electromagnetic gage, shear-wave velocity via surface-wave testing methods, and dynamic stiffness via the Humboldt GeoGauge for five representative paving projects covering a range of mixes and traffic loads. The in situ tests were compared against laboratory measurements of core density and dynamic modulus. The in situ PaveTracker density had a low correlation with laboratory density and was not sensitive to variations in temperature or asphalt mix type. The in situ shear-wave velocity measured by surface-wave methods was most sensitive to variations in temperature and asphalt mix type. The in situ density and in situ shear-wave velocity were combined to calculate an in situ dynamic modulus, which is a performance-based quality measurement. The in situ GeoGauge stiffness measured on hot asphalt mixtures several hours after paving had a high correlation with the in situ dynamic modulus and the laboratory density, whereas the stiffness measurement of asphalt mixtures cooled with dry ice or at ambient temperature one or more days after paving had a very low correlation with the other measurements. To transform the in situ moduli from surface-wave testing into quantitative quality measurements, a QC/QA procedure was developed to first correct the in situ moduli measured at different field temperatures to the moduli at a common reference temperature based on master curves from laboratory dynamic modulus tests. The corrected in situ moduli can then be compared against the design moduli for an assessment of the actual pavement performance. A preliminary study of microelectromechanical systems- (MEMS)-based sensors for QC/QA and health monitoring of asphalt pavements was also performed.
Resumo:
The stability of air bubbles in fresh concrete can have a profound influence of the potential durability of the system, because excessive losses during placement and consolidation can compromise the ability of the mixture to resist freezing and thawing. The stability of air void systems developed by some air entraining admixtures (AEAs) could be affected by the presence of some polycarboxylate-based water reducing admixtures (WRAs). The foam drainage test provides a means of measuring the potential stability of air bubbles in a paste. A barrier to acceptance of the test was that there was little investigation of the correlation with field performance. The work reported here was a limited exercise seeking to observe the stability of a range of currently available AEA/WRA combinations in the foam drainage test; then, to take the best and the worst and observe their stabilities on concrete mixtures in the lab. Based on the data collected, the foam drainage test appears to identify stable combinations of AEA and WRA.
Resumo:
Sufficient evidence was not discovered in this brief search to alter the general opinion that the Serviceability (Present Serviceability Index-PSI) - Performance Concepts developed by the AASHO Road Test provides the optimum engineering basis for pavement management. Use of these concepts in Iowa has the additional advantage in that we have a reasonable quantity of historical data over a period of time on the change in pavement condition as measured by PSI's. Some additional benefits would be the ability to better assess our needs with respect to those being recommended to Congress by AASHTO Committees. These concepts have been the basis used for developing policies on dimensions and weight of vehicles and highway needs which the AASHTO Transport Committees have recommended to the United States House Committee on Ways and Means. The first recommendation based on these concepts was made in the mid 1960's. Iowa's participation in the evaluation for this recommendation was under the direction of our present Director of Transportation, Mr. Raymond Kassel. PSI Indexes had to be derived from subjective surface ratings at that time. The most recent recommendation to Congress was made in November of 1977. Based on the rationale expressed above, a pilot study of the major part of the rural interstate system was conducted. The Objective of the study was to measure pavement performance through the use of the Present Serviceability Index (PSI) - Pavement Performance concepts as developed by the AASHO Road Test and to explore the usefulness of this type of data as a pavement management tool. Projects in the vicinity of the major urban centers were not included in this study due to the extra time that would be required to isolate accurate traffic data in these areas. Projects consisting of asphalt surface courses on crushed stone base sections were not included.
Resumo:
The Iowa DOT has been using the AASHTO Present Serviceability Index (PSI) rating procedure since 1968 to rate the condition of pavement sections. A ride factor and a cracking and patching factor make up the PSI value. Crack and patch surveys have been done by sending crews out to measure and record the distress. Advances in video equipment and computers make it practical to videotape roads and do the crack and patch measurements in the office. The objective of the study was to determine the feasibility of converting the crack and patch survey operation to a video recording system with manual post processing. The summary and conclusions are as follows: Video crack and patch surveying is a feasible alternative to the current crack and patch procedure. The cost per mile should be about 25 percent less than the current procedure. More importantly, the risk of accidents is reduced by getting the people and vehicles off the roadway and shoulder. Another benefit is the elimination of the negative public perceptions of the survey crew on the shoulder.
Resumo:
Recent data compiled by the National Bridge Inventory revealed 29% of Iowa's approximate 24,600 bridges were either structurally deficient or functionally obsolete. This large number of deficient bridges and the high cost of needed repairs create unique problems for Iowa and many other states. The research objective of this project was to determine the load capacity of a particular type of deteriorating bridge – the precast concrete deck bridge – which is commonly found on Iowa's secondary roads. The number of these precast concrete structures requiring load postings and/or replacement can be significantly reduced if the deteriorated structures are found to have adequate load capacity or can be reliably evaluated. Approximately 600 precast concrete deck bridges (PCDBs) exist in Iowa. A typical PCDB span is 19 to 36 ft long and consists of eight to ten simply supported precast panels. Bolts and either a pipe shear key or a grouted shear key are used to join adjacent panels. The panels resemble a steel channel in cross-section; the web is orientated horizontally and forms the roadway deck and the legs act as shallow beams. The primary longitudinal reinforcing steel bundled in each of the legs frequently corrodes and causes longitudinal cracks in the concrete and spalling. The research team performed service load tests on four deteriorated PCDBs; two with shear keys in place and two without. Conventional strain gages were used to measure strains in both the steel and concrete, and transducers were used to measure vertical deflections. Based on the field results, it was determined that these bridges have sufficient lateral load distribution and adequate strength when shear keys are properly installed between adjacent panels. The measured lateral load distribution factors are larger than AASHTO values when shear keys were not installed. Since some of the reinforcement had hooks, deterioration of the reinforcement has a minimal affect on the service level performance of the bridges when there is minimal loss of cross-sectional area. Laboratory tests were performed on the PCDB panels obtained from three bridge replacement projects. Twelve deteriorated panels were loaded to failure in a four point bending arrangement. Although the panels had significant deflections prior to failure, the experimental capacity of eleven panels exceeded the theoretical capacity. Experimental capacity of the twelfth panel, an extremely distressed panel, was only slightly below the theoretical capacity. Service tests and an ultimate strength test were performed on a laboratory bridge model consisting of four joined panels to determine the effect of various shear connection configurations. These data were used to validate a PCDB finite element model that can provide more accurate live load distribution factors for use in rating calculations. Finally, a strengthening system was developed and tested for use in situations where one or more panels of an existing PCDB need strengthening.
Resumo:
The MIT Scan T2 device has been implemented in Iowa as a new method for determining PCC pavement thickness compliance. The T2 device utilizes a magnetic pulse induction technology to measure the distance from a sensor to a metal target. The objective of this project was to conduct an interlaboratory study (ASTM C802) to determine the precision of the test.Fifteen MIT Scan T2 gauges and fifteen operators performed testing on three reference platforms and nine pavement locations of varying thicknesses. The testing was conducted on October 29, 2014 at two sites near Ames, Iowa. Usable data was obtained from every operator at all locations.