4 resultados para Nuclear Fusion
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Secondary accident statistics can be useful for studying the impact of traffic incident management strategies. An easy-to-implement methodology is presented for classifying secondary accidents using data fusion of a police accident database with intranet incident reports. A current method for classifying secondary accidents uses a static threshold that represents the spatial and temporal region of influence of the primary accident, such as two miles and one hour. An accident is considered secondary if it occurs upstream from the primary accident and is within the duration and queue of the primary accident. However, using the static threshold may result in both false positives and negatives because accident queues are constantly varying. The methodology presented in this report seeks to improve upon this existing method by making the threshold dynamic. An incident progression curve is used to mark the end of the queue throughout the entire incident. Four steps in the development of incident progression curves are described. Step one is the processing of intranet incident reports. Step two is the filling in of incomplete incident reports. Step three is the nonlinear regression of incident progression curves. Step four is the merging of individual incident progression curves into one master curve. To illustrate this methodology, 5,514 accidents from Missouri freeways were analyzed. The results show that secondary accidents identified by dynamic versus static thresholds can differ by more than 30%.
Resumo:
Report on a special investigation of the Region 4 Fusion Office in Atlantic, Iowa for the period March 1, 2006 through August 31, 2009
Resumo:
The Troxler 3241-B Asphalt Content Gauge is intended for rapidly determining the bitumen content of bituminous paving mixtures. A 300 Millicurie Americuium 241: Beryllium source emitts neutrons which are affected by the hydrogen in the mix. The affected neutrons are detected by Helium 3 detectors, counted and computed into a percentage bitumen of the asphalt mix. The current methods of determining the bitumen content of bituminous paving mixtures requires the use of potentially hazardous chemicals and several hours of testing time. When extracted aggregates are not needed, determination of the bitumen content of a paving mixture by the nuclear method may be easier, quicker and potentially safer. The objective of the project is to study the accuracy of the Troxler 3241-B Nuclear Asphalt Content Gauge in measuring the asphalt cement (AC) content of asphalt concrete mixtures produced with different asphalt cements and different aggregates.
Resumo:
Based on results of an evaluation performed during the winter of 1985-86, six Troxler 3241-B Asphalt Content Gauges were purchased for District use in monitoring project asphalt contents. Use of these gauges will help reduce the need for chemical based extractions. Effective use of the gauges depends on the accurate preparation and transfer of project mix calibrations from the Central Lab to the Districts. The objective of this project was to evaluate the precision and accuracy of a gauge in determining asphalt contents and to develop a mix calibration transfer procedure for implementation during the 1987 construction. The first part of the study was accomplished by preparing mix calibrations in the Central Lab gauge and taking multiple measurements of a sample with known asphalt content. The second part was accomplished by preparing transfer pans, obtaining count data on the pans using each gauge, and transferring calibrations from one gauge to another through the use of calibration transfer equations. The transferred calibrations were tested by measuring samples with a known asphalt content. The study established that the Troxler 3241-B Asphalt Content Gauge yields results of acceptable accuracy and precision as evidenced by a standard deviation of 0.04% asphalt content on multiple measurements of the same sample. The calibration transfer procedure proved feasible and resulted in the calibration transfer portion of Materials I.M. 335 - Method of Test For Determining the Asphalt Content of Bituminous Mixtures by the Nuclear Method.