3 resultados para Nonhomogeneous initial-boundary-value problems
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
A detailed investigation has been conducted on core samples taken from 17 portland cement concrete pavements located in Iowa. The goal of the investigation was to help to clarify the root cause of the premature deterioration problem that has become evident since the early 1990s. Laboratory experiments were also conducted to evaluate how cement composition, mixing time, and admixtures could have influenced the occurrence of premature deterioration. The cements used in this study were selected in an attempt to cover the main compositional parameters pertinent to the construction industry in Iowa. The hardened air content determinations conducted during this study indicated that the pavements that exhibited premature deterioration often contained poor to marginal entrained-air void systems. In addition, petrographic studies indicated that sometimes the entrained-air void system had been marginal after mixing and placement of the pavement slab, while in other instances a marginal to adequate entrained-air void system had been filled with ettringite. The filling was most probably accelerated because of shrinkage cracking at the surface of the concrete pavements. The results of this study suggest that the durability—more sciecifically, the frost resistance—of the concrete pavements should be less than anticipated during the design stage of the pavements. Construction practices played a significant role in the premature deterioration problem. The pavements that exhibited premature distress also exhibited features that suggested poor mixing and poor control of aggregate grading. Segregation was very common in the cores extracted from the pavements that exhibited premature distress. This suggests that the vibrators on the paver were used to overcome a workability problem. Entrained-air voids formed in concrete mixtures experiencing these types of problems normally tend to be extremely coarse, and hence they can easily be lost during the paving process. This tends to leave the pavement with a low air content and a poor distribution of air voids. All of these features were consistent with a premature stiffening problem that drastically influenced the ability of the contractor to place the concrete mixture. Laboratory studies conducted during this project indicated that most premature stiffening problems can be directly attributed to the portland cement used on the project. The admixtures (class C fly ash and water reducer) tended to have only a minor influence on the premature stiffening problem when they were used at the dosage rates described in this study.
Resumo:
The first phase of this research involved an effort to identify the issues relevant to gaining a better understanding of the County Engineering profession. A related objective was to develop strategies to attract responsible, motivated and committed professionals to pursue County Engineering positions. In an era where a large percentage of County Engineers are reaching retirement age, the shrinking employment pool may eventually jeopardize the quality of secondary road systems not only in Iowa, but nationwide. As we move toward the 21st century, in an era of declining resources, it is likely that professional staff members in charge of secondary roads will find themselves working with less flexible budgets for the construction and maintenance of roads and bridges. It was important to understand the challenges presented to them, and the degree to which those challenges will demand greater expertise in prioritizing resource allocations for the rehabilitation and maintenance of the 10 million miles of county roads nationwide. Only after understanding what a county engineer is and what this person does will it become feasible for the profession to begin "selling itself", i.e., attracting a new generation of County Engineers. Reaching this objective involved examining the responsibilities, goals, and, sometimes, the frustrations experienced by those persons in charge of secondary road systems in the nine states that agreed to participate in the study. The second phase of this research involved addressing ways to counter the problems associated with the exodus of County Engineers who are reaching retirement age. Many of the questions asked of participants asked them to compare the advantages and disadvantages of public sector work with the private sector. Based on interviews with nearly 50 County Engineers and feedback from 268 who returned surveys for the research, issues relevant to the profession were analyzed and recommendations were made to the profession as it prepares to attract a new generation. It was concluded that both State and Regional Associations for County Engineers, and the National Association of County Engineers are most well-situated to present opportunities for continued professional development. This factor is appealing for those who are interested in competitive advantages as professionals. While salaries in the public sector may not be able to effectively compete with those offered by the private sector, it was concluded that this is only one factor of concern to those who are in the business of "public service". It was concluded, however, that Boards of Supervisors and their equivalents in other states will need to more clearly understand the value of the contributions made by County Engineers. Then the selling points the profession can hope to capitalize on can focus on the strength of state organizations and a strong national organization that act as clearinghouses of information and advocates for the profession, as well as anchors that provide opportunities for staying current on issues and technologies.
Resumo:
The design of satisfactory supporting and expansion devices for highway bridges is a problem which has concerned bridge design engineers for many years. The problems associated with these devices have been emphasized by the large number of short span bridges required by the current expanded highway program of expressways and interstate highways. The initial objectives of this investigation were: (1) To review and make a field study of devices used for the support of bridge superstructures and for provision of floor expansion; (2) To analyze the forces or factors which influence the design and behavior of supporting devices and floor expansion systems; and (3) To ascertain the need for future research particularly on the problems of obtaining more economical and efficient supporting and expansion devices, and determining maximum allowable distance between such devices. The experimental portion was conducted to evaluate one of the possible simple and economical solutions to the problems observed in the initial portion. The investigation reported herein is divided into four major parts or phases as follows: (1) A review of literature; (2) A survey by questionnaire of design practice of a number of state highway departments and consulting firms; (3) Field observation of existing bridges; and, (4) An experimental comparison of the dynamic behavior of rigid and elastomeric bearings.