5 resultados para Non-work related practises
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The Pesticide Poisoning Surveillance Program within the Division of ADPER & EH monitors, collects, and analyzes pesticide poisonings to determine the extent to which Iowans are being affected by pesticide exposure. The information gathered by this program is disseminated to governmental agencies, the public, and health care professionals. In addition, IDPH is required to submit its findings annually to the Iowa Department of Agriculture and Land Stewardship (IDALS).
Resumo:
The objective of this research study is to evaluate the performance, maintenance requirements and cost effectiveness of constructing reinforced slope along a concrete bikeway overpass with a Geogrid system such as manufactured by Tensar Corporation or Reinforced Earth Company. This final report consists of two separate reports - construction and performance. An earlier design report and work plan was submitted to the Iowa DOT in 1989. From the Design Report, it was determined that the reinforced slope would be the most economical system for this particular bikeway project. Preliminary cost estimates for other design alternatives including concrete retaining walls, gabions and sheet pile walls ranged from $204/L.F. to $220/L.F. The actual final construction cost of the reinforced slope with GEDGRIDS was around $112/L.F. Although, since the reinforced slope system was not feasible next to the bridge overpass because of design constraints, a fair cost comparison should reflect costs of constructing a concrete retaining wall. Including the concrete retaining wall costs raises the per lineal foot cost to around $122/L.F. In addition to this initial construction cost effectiveness of the reinforced slope, there has been little or no maintenance needed for this reinforced slope. It was noted that some edge mowing or weed whacking could be done near the concrete bikeway slab to improve the visual quality of the slope, but no work has been assigned to city crews. It was added that this kind of weed whacking over such steep slope is more difficult and there could possibly be more potential for work related injury. The geogrid reinforced slope has performed really well once the vegetation took control and prevented soil washing across the bikeway slab. To that end, interim erosion control measures might need to be considered in future projects. Some construction observations were noted. First, there i s no specialized experience or equipment required for a contractor to successfully build a low-to-medium geogrid reinforced slope structure. Second, the adaptability of the reinforced earth structure enables the designer to best fit the shape of the structure to the environment and could enhance aesthetic quality. Finally, a reinforced slope can be built with relatively soft soils provided differential settlements between facing are limited to one or two percent.
Resumo:
An IDPH Occupational Health and Safety Surveillance Program (OHSSP) analysis of Iowa’s work-related traumatic fatalities shows that transportation events accounted for 48 of 90 deaths in 2011. Agricultural activities were involved in 21 of the 48 transportation deaths (44%) and 32 of the 90 total fatalities (36%). Tractor and ATV (all-terrain vehicle) or UTV (utility vehicle) rollovers were responsible for 62% (13/21) of the farm or ag-related transportation deaths.
Resumo:
Building on previous research, the goal of this project was to identify significant influencing factors for the Iowa Department of Transportation (DOT) to consider in future updates of its Instructional Memorandum (I.M.) 3.213, which provides guidelines for determining the need for traffic barriers (guardrail and bridge rail) at secondary roadway bridges—specifically, factors that might be significant for the bridge rail rating system component of I.M. 3.213. A literature review was conducted of policies and guidelines in other states and, specifically, of studies related to traffic barrier safety countermeasures at bridges in several states. In addition, a safety impact study was conducted to evaluate possible non-driver-related behavior characteristics of crashes on secondary road structures in Iowa using road data, structure data, and crash data from 2004 to 2013. Statistical models (negative binomial regression) were used to determine which factors were significant in terms of crash volume and crash severity. The study found that crashes are somewhat more frequent on or at bridges possessing certain characteristics—traffic volume greater than 400 vehicles per day (vpd) (paved) or greater than 50 vpd (unpaved), bridge length greater than 150 ft (paved) or greater than 35 ft (unpaved), bridge width narrower than its approach (paved) or narrower than 20 ft (unpaved), and bridges older than 25 years (both paved and unpaved). No specific roadway or bridge characteristic was found to contribute to more serious crashes. The study also confirmed previous research findings that crashes with bridges on secondary roads are rare, low-severity events. Although the findings of the study support the need for appropriate use of bridge rails, it concludes that prescriptive guidelines for bridge rail use on secondary roads may not be necessary, given the limited crash expectancy and lack of differences in crash expectancy among the various combinations of explanatory characteristics.
Resumo:
The Highway Safety Manual is the national safety manual that provides quantitative methods for analyzing highway safety. The HSM presents crash modification factors related to work zone characteristics such as work zone duration and length. These crash modification factors were based on high-impact work zones in California. Therefore there was a need to use work zone and safety data from the Midwest to calibrate these crash modification factors for use in the Midwest. Almost 11,000 Missouri freeway work zones were analyzed to derive a representative and stratified sample of 162 work zones. The 162 work zones was more than four times the number of work zones used in the HSM. This dataset was used for modeling and testing crash modification factors applicable to the Midwest. The dataset contained work zones ranging from 0.76 mile to 9.24 miles and with durations from 16 days to 590 days. A combined fatal/injury/non-injury model produced a R2 fit of 0.9079 and a prediction slope of 0.963. The resulting crash modification factors of 1.01 for duration and 0.58 for length were smaller than the values in the HSM. Two practical application examples illustrate the use of the crash modification factors for comparing alternate work zone setups.