3 resultados para Non-contact mapping

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-speed non-contact laser profilers have become the standard testing equipment for pavement management ride quality testing. The same technology used in the high-speed profilers is now being used in lightweight profilers for construction smoothness testing. The lightweight profilers have many advantages over the California 25-ft profilograph. Despite the many advantages of the lightweight profilers, there is resistance from the contracting industry toward eliminating the 25-ft profilograph for construction ride testing. One way to reduce or overcome the resistance is to evaluate and demonstrate the advantages/disadvantages of the lightweight profiler in actual field use in Iowa. The objective of the study was to purchase a lightweight profiler and to evaluate its suitability for construction smoothness quality verification and quality acceptance on Iowa projects. A lightweight profiler, an Ames Engineering, Inc. LISA single laser unit, was received in February 2003 for the study. Based on the work done during the 2003 construction season, the following conclusions can be made: (1) For hot mix asphalt surfaces, the LISA correlated well with the contractors' profilographs; (2) LISA results are significantly affected by longitudinal tining on portland cement concrete pavements, requiring a laser system upgrade to give accurate results; (3) A significant timesaving was realized by using the LISA; (4) Increasing visibility and reducing time in the construction zone improved safety; (5) One person with limited lifting capabilities could set up and operate the LISA; and (6) With the current Iowa Department of Transportation specification, the LISA cannot totally replace the profilograph, since bridges and short segments with no adjoining pavement would still require a profilograph.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The MIT-Scan-T2 device is marketed as a non-destructive way to determine pavement thickness on both HMA and PCC pavements. PCC pavement thickness determination is an important incentivedisincentive measurement for the Iowa DOT and contractors. The thickness incentive can be as much as 3% of the concrete contact unit price and the disincentive can be as severe as remove and replace. This study evaluated the potential of the MIT device for PCC pavement thickness quality assurance. The limited testing indicates the unit is sufficiently repeatable and accurate enough to replace core drilling as the thickness measurement method. Further study is needed to statistically establish the single user and multi-user/device precision as well as establish an appropriate sampling protocol and PWL specification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iowa state, county, and city engineering offices expend considerable effort monitoring the state’s approximately 25,000 bridges, most of which span small waterways. In fact, the need for monitoring is actually greater for bridges over small waterways because scour processes are exacerbated by the close proximity of abutments, piers, channel banks, approach embankments, and other local obstructions. The bridges are customarily inspected biennially by the county’s road department bridge inspectors. It is extremely time consuming and difficult to obtain consistent, reliable, and timely information on bridge-waterway conditions for so many bridges. Moreover, the current approaches to gather survey information is not uniform, complete, and quantitative. The methodology and associated software (DIGIMAP) developed through the present project enable a non-intrusive means to conduct fast, efficient, and accurate inspection of the waterways in the vicinity of the bridges and culverts using one technique. The technique combines algorithms image of registration and velocimetry using images acquired with conventional devices at the inspection site. The comparison of the current bridge inspection and monitoring methods with the DIGIMAP methodology enables to conclude that the new procedure assembles quantitative information on the waterway hydrodynamic and morphologic features with considerable reduced effort, time, and cost. It also improves the safety of the bridge and culvert inspections conducted during normal and extreme hydrologic events. The data and information are recorded in a digital format, enabling immediate and convenient tracking of the waterway changes over short or long time intervals.