6 resultados para Myrmecophilous fly
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The sixth in a series, this bulletin further compiles the reports on completed research done for the Iowa State Highway Research Board under its Project HR-1, The loess and glacial till materials of Iowa; an investigation of their physical and chemical properties and techniques for processing them to increase their all-weather stability for road construction. The research, started in 1950, has been conducted by the Iowa Engineering Experiment Station at Iowa State University under its Project 283-S.
Resumo:
The major objective of this research project is to investigate how fly ash influences the chemical durability of portland cement based materials. The testing program is evaluating how Iowa fly ashes influence the sulfate durability of portland cement-fly ash pastes, mortars, and concretes. Also, alkali-reactivity studies are being conducted on mortar bar specimens prepared in accordance with ASTM C 311. Prelimary sulfate test results, based only on mortar bar studies, indicate that only the very high-calcium fly ash (29 percent CaO, by weight) consistently reduced the durability of test specimens exposed to a solution containing 5 percent sodium sulfate. The remaining four fly ashes that were used in the study showed negligible to dramatic increases in sulfate resistance. Concrete specimens were only beginning to respond to the sulfate solutions after about one year of exposure; and hence, considerably more time will be needed to assess their performance. Preliminary results from the alkali-reactivity tests have indicated that the Oreopolis aggregate is not sensitive to alkali attack. However, some of the test results have indicated that the testing procedure may be prone to delayed expansion due to the presence of periclase (MgO) in the Class C fly ashes. Research is being planned to: (1) verify if the periclase is influencing test results; and (2) estimating the magnitude of the potential error.
Resumo:
The following report summarizes research activities on the project for the period December 1, 1985 through November 31, 1986. Research efforts for the first year have proceeded basically as outlined in the project proposal.
Resumo:
The following report summarizes research activities on the project for the period December 1, 1986 to November 30, 1987. Research efforts for the second year deviated slightly from those described in the project proposal. By the end of the second year of testing, it was possible to begin evaluating how power plant operating conditions influenced the chemical and physical properties of fly ash obtained from one of the monitored power plants (Ottumwa Generating Station, OGS). Hence, several of the tasks initially assigned to the third year of the project (specifically tasks D, E, and F) were initiated during the second year of the project. Manpower constraints were balanced by delaying full scale implementation of the quantitative X-ray diffraction and differential thermal analysis tasks until the beginning of the third year of the project. Such changes should have little bearing on the outcome of the overall project.
Resumo:
The following report summarizes research activities conducted on Iowa Department of Transportation Project HR-327, for the period April 1, 1990 through March 31, 1991. The purpose of this research project is to investigate how fly ash influences the chemical durability of portland cement based materials. The goal of this research is to utilize the empirical information obtained from laboratory testing to better estimate the durability of portland cement concrete pavements (with and without fly ash) subjected to chemical attack via the natural environment or the application of deicing salts. This project is being jointly sponsored by the Iowa Department of Transportation and the Iowa Fly Ash Affiliate Research group. The research work is also being cooperatively conducted by Iowa State University and Iowa Department of Transportation research personnel. Researchers at Iowa State University are conducting the paste and mortar studies while Iowa Department of Transportation researchers are conducting the concrete study.
Resumo:
Fly ash was used to replace 15% of the cement in C3WR and C6WR concrete paving mixes containing ASTM C494 Type A water reducin9 admixtures. Two Class C ashes and one Class F ash from Iowa approved sources were examined in each mix. When Class C ashes were used they were substituted on the basis of 1 pound of ash added for each pound of cement deleted. When Class F was used it was substituted on the basis of 1.25 pounds of ash added for each pound of cement deleted. Compressive strengths of the water reduced mixes, with and without fly ash, were determined at 7, 28, and 56 days of age. In every case except one the mixes containing the fly ash exhibited higher strengths than the same concrete mix without the fly ash. An excellent correlation existed between the C3WR and C6WR mixes both with and without fly ash substitutions. The freeze-thaw durability of the concrete studied was not affected by presence or absence of fly ash. The data gathered suggests that the present Class C water reduced concrete paving mixes can be modified to allow the substitution of 15% of the cement with an approved fly ash.