4 resultados para Musical interpretation
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Report produced by Iowa Departmment of Agriculture and Land Stewardship
Resumo:
This research consisted of five laboratory experiments designed to address the following two objectives in an integrated analysis: (1) To discriminate between the symbol Stop Ahead warning sign and a small set of other signs (which included the word-legend Stop Ahead sign); and (2) To analyze sign detection, recognizability, and processing characteristics by drivers. A set of 16 signs was used in each of three experiments. A tachistoscope was used to display each sign image to a respondent for a brief interval in a controlled viewing experiment. The first experiment was designed to test detection of a sign in the driver's visual field; the second experiment was designed to test the driver's ability to recognize a given sign in the visual field; and the third experiment was designed to test the speed and accuracy of a driver's response to each sign as a command to perform a driving action. A fourth experiment tested the meanings drivers associated with an eight-sign subset of the 16 signs used in the first three experiments. A fifth experiment required all persons to select which (if any) signs they considered to be appropriate for use on two scale model county road intersections. The conclusions are that word-legend Stop Ahead signs are more effective driver communication devices than symbol stop-ahead signs; that it is helpful to drivers to have a word plate supplementing the symbol sign if a symbol sign is used; and that the guidance in the Manual on Uniform Traffic Control Devices on the placement of advance warning signs should not supplant engineering judgment in providing proper sign communication at an intersection.
Resumo:
The objective of this report is to provide Iowa county engineers and highway maintenance personnel with procedures that will allow them to efficiently and effectively interpret and repair or avoid landslides. The research provides an overview of basic slope stability analyses that can be used to diagnose the cause and effect associated with a slope failure. Field evidence for identifying active or potential slope stability problems is outlined. A survey of county engineers provided data for presenting a slope stability risk map for the state of Iowa. Areas of high risk are along the western border and southeastern portion of the state. These regions contain deep to moderately deep loess. The central portion of the state is a low risk area where the surficial soils are glacial till or thin loess over till. In this region, the landslides appear to occur predominately in backslopes along deeply incised major rivers, such as the Des Moines River, or in foreslopes. The south-central portion of the state is an area of medium risk where failures are associated with steep backslopes and improperly compacted foreslopes. Soil shear strength data compiled from the Iowa DOT and consulting engineers files are correlated with geologic parent materials and mean values of shear strength parameters and unit weights were computed for glacial till, friable loess, plastic loess and local alluvium. Statistical tests demonstrate that friction angles and unit weights differ significantly but in some cases effective stress cohesion intercept and undrained shear strength data do not. Moreover, effective stress cohesion intercept and undrained shear strength data show a high degree of variability. The shear strength and unit weight data are used in slope stability analyses for both drained and undrained conditions to generate curves that can be used for a preliminary evaluation of the relative stability of slopes within the four materials. Reconnaissance trips to over fifty active and repaired landslides in Iowa suggest that, in general, landslides in Iowa are relatively shallow [i.e., failure surfaces less than 6 ft (2 m) deep] and are either translational or shallow rational. Two foreslope and two backslope failure case histories provide additional insights into slope stability problems and repair in Iowa. These include the observation that embankment soils compacted to less than 95% relative density show a marked strength decrease from soils at or above that density. Foreslopes constructed of soils derived from shale exhibit loss of strength as a result of weathering. In some situations, multiple causes of instability can be discerned from back analyses with the slope stability program XSTABL. In areas where the stratigraphy consists of loess over till or till over bedrock, the geologic contracts act as surfaces of groundwater accumulation that contribute to slope instability.
Resumo:
This contract extension was granted to analyze data obtained in the original contract period at a level of detail not called for in the original contract nor permitted by the time constraints of the original contract schedule. These further analyses focused on two primary questions: I. What sources of variation can be isolated within the overall pattern of driver recognition errors reported previously for the 16 signs tested in Project HR-256? 2. Were there systematic relations among data on the placement of signs in a simulated signing exercise and data on the respondents' ability to detect the presence of a sign in a visual field or their ability to recognize quickly and correctly a sign shown them or the speed with which these same persons can respond to a sign for a driver decision?