93 resultados para Multivariate Monitoring
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The Division of Criminal and Juvenile Justice Planning issued its first state legislation monitoring report in February 2002, covering the first six month’s impact of Senate File 543 on the justice system. SF 543, enacted during the 2001 legislative session, changed the maximum penalty for first-offense Burglary-3rd degree, and established new sentencing options available to the court: * An alternative determinate prison sentence for certain Class D felons * Extended felony sentence reconsideration from 90 days to one year
Resumo:
The Division of Criminal and Juvenile Justice Planning issued its first state legislation monitoring report in February 2002, covering the first six months’ impact of Senate File 543 (which enacted a number of sentencing changes) on the justice system; monitoring of the correctional impact of this bill was at the request of several members of the legislature. Since then, the Criminal and Juvenile Justice Planning Advisory Council has requested that CJJP monitor the correctional impact of enacted legislation of particular interest. This report covers monitoring results or future plans to monitor the following: 1. Changes in “crack” cocaine and “powder” cocaine penalties under Chapter 124.401 (effective FY2004; see p.3). 2. Commitments to prison involving manufacture, distribution, or possession of methamphetamine under Chapter 124.401 (see p.5). 3. Prosecution of offenders for child endangerment under Chapter 726.6(g) for permitting the presence of a child or minor at a location where a controlled substance manufacturing or a product possession violation occurs (see p.7). 4. Provision of an enhanced penalty for manufacturing of controlled substances under Chapter 124.401C when children are present and the offender is not charged under section 726.6(g) (see p. 7). 5. Creating a new offense when a retailer sells more than two packages of any product containing pseudoephedrine (chapter 126.23A) and providing for an enhanced penalty under Chapter 714.7C when a theft involves more than two packages of similar products (see p.8). 6. Establishment of parole eligibility at 70% of time served for persons sentenced under the “85% law” provisions of Iowa Code Section 902.12. (effective FY2005; see p. 9).
Resumo:
This report is a well illustrated and practical Guide intended to aid engineers and engineering technicians in monitoring, maintaining, and protecting bridge waterways so as to mitigate or prevent scour from adversely affecting the structural performance of bridge abutments, piers, and approach road embankments. Described and illustrated here are the scour processes affecting the stability of these components of bridge waterways. Also described and illustrated are methods for monitoring waterways, and the various methods for repairing scour damage and protecting bridge waterways against scour. The Guide focuses on smaller bridges, especially those in Iowa. Scour processes at small bridges are complicated by the close proximity of abutments, piers, and waterway banks, such that scour processes interact in ways difficult to predict and for which reliable design relationships do not exist. Additionally, blockage by woody debris or by ice, along with changes in approach channel alignment, can have greater effects on pier and abutment scour for smaller bridges. These considerations tend to cause greater reliance on monitoring for smaller bridges. The Guide is intended to augment and support, as a source of information, existing procedures for monitoring bridge waterways. It also may prompt some adjustments of existing forms and reports used for bridge monitoring. In accord with increasing emphasis on effective management of public facilities like bridges, the Guide ventures to include an example report format for quantitative risk assessment applied to bridge waterways. Quantitative risk assessment is useful when many bridges have to be evaluated for scour risk and damage, and priorities need to be determined for repair and protection work. Such risk assessment aids comparison of bridges at risk. It is expected that bridge inspectors will implement the Guide as a concise, handy reference available back at the office. The Guide also likely may be implemented as an educational primer for new inspectors who have yet to become acquainted with waterway scour. Additionally, the Guide may be implemented as a part of process to check whether existing bridge-inspection forms or reports adequately encompass bridge-waterway scour.
Resumo:
The objective of the study presented in this report was to document the launch of the Iowa River Bridge and to monitor and evaluate the structural performance of the bridge superstructure and substructure during the launch. The Iowa Department of Transportation used an incremental launching method, which is relatively unique for steel I-girder bridges, to construct the Iowa River Bridge over an environmentally sensitive river valley in central Iowa. The bridge was designed as two separate roadways consisting of four steel plate girders each that are approximately 11 ft deep and span approximately 301 ft each over five spans. The concrete bridge deck was not placed until after both roadways had been launched. One of the most significant monitoring and evaluation observations related to the superstructure was that the bottom flange (and associated web region) was subjected to extremely large stresses during the crossing of launch rollers. Regarding the substructure performance, the column stresses did not exceed reasonable design limits during the daylong launches. The scope of the study did not allow adequate quantification of the measured applied launch forces at the piers. Future proposed esearch should provide an opportunity to address this. The overall experimental performance of the bridge during the launch was compared with the predicted design performance. In general, the substructure design, girder contact stress, and total launching force assumptions correlated well with the experimental results. The design assumptions for total axial force in crossframe members, on the other hand, differed from the experimental results by as much as 300%.
Resumo:
The purpose of this document is to provide guidelines for the annual monitoring and evaluation of Iowa’s adult literacy funded local programs. Section 224(b)(3) of the Adult Education and Family Literacy Act (AEFLA) states that the State Education Agency (SEA) will provide “a description of how the eligible agency [Iowa Department of Education] will evaluate annually the effectiveness of the adult education and literacy activities based on the performance measures described in section 212.” In compliance with that mandate, the following describes the Iowa Department of Education’s procedures for local adult literacy program evaluation strategies.
Resumo:
The Iowa Department of Natural Resources has produced an 4 page article about how to assess Iowa's streams and rivers. How to use ambient monitoring of streams and river in Iowa.
Resumo:
The Iowa Department of Natural Resources has produced an 4 page article about how to assess Iowa's streams and rivers. How to use ambient monitoring.
Resumo:
The Iowa Department of Natural Resources has produced an 4 page article about how to assess Iowa's streams and rivers. How to use ambient monitoring of streams and river in Iowa.
Resumo:
Various test methods exist for measuring heat of cement hydration; however, most current methods require expensive equipment, complex testing procedures, and/or extensive time, thus not being suitable for field application. The objectives of this research are to identify, develop, and evaluate a standard test procedure for characterization and quality control of pavement concrete mixtures using a calorimetry technique. This research project has three phases. Phase I was designed to identify the user needs, including performance requirements and precision and bias limits, and to synthesize existing test methods for monitoring the heat of hydration, including device types, configurations, test procedures, measurements, advantages, disadvantages, applications, and accuracy. Phase II was designed to conduct experimental work to evaluate the calorimetry equipment recommended from the Phase I study and to develop a standard test procedure for using the equipment and interpreting the test results. Phase II also includes the development of models and computer programs for prediction of concrete pavement performance based on the characteristics of heat evolution curves. Phase III was designed to study for further development of a much simpler, inexpensive calorimeter for field concrete. In this report, the results from the Phase I study are presented, the plan for the Phase II study is described, and the recommendations for Phase III study are outlined. Phase I has been completed through three major activities: (1) collecting input and advice from the members of the project Technical Working Group (TWG), (2) conducting a literature survey, and (3) performing trials at the CP Tech Center’s research lab. The research results indicate that in addition to predicting maturity/strength, concrete heat evolution test results can also be used for (1) forecasting concrete setting time, (2) specifying curing period, (3) estimating risk of thermal cracking, (4) assessing pavement sawing/finishing time, (5) characterizing cement features, (6) identifying incompatibility of cementitious materials, (7) verifying concrete mix proportions, and (8) selecting materials and/or mix designs for given environmental conditions. Besides concrete materials and mix proportions, the configuration of the calorimeter device, sample size, mixing procedure, and testing environment (temperature) also have significant influences on features of concrete heat evolution process. The research team has found that although various calorimeter tests have been conducted for assorted purposes and the potential uses of calorimeter tests are clear, there is no consensus on how to utilize the heat evolution curves to characterize concrete materials and how to effectively relate the characteristics of heat evolution curves to concrete pavement performance. The goal of the Phase II study is to close these gaps.
Resumo:
A report on Iowa Water Monitoring produced by Iowa Department of Natural Resources.
Resumo:
Part of Iowa's Water Ambient monitoring Program, produced by the Iowa Department of Natural Resources.
Resumo:
This fact sheet answers questions such as, is it safe to swim in the water and who is monitoring the beaches in Iowa
Resumo:
This fact sheet answers questions such as, is it safe to swim in the water and who is monitoring the beaches in Iowa
Resumo:
Water fact sheet for Iowa Department of Natural Resources and the Geological Bureau.
Resumo:
Water fact sheet for Iowa Department of Natural Resources and the Geological Bureau.