11 resultados para Modeling breakthrough curves
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This monthly report from the Iowa Department of Natural Resources is about the water quality management of Iowa's rivers, streams and lakes.
Resumo:
The 2007 Iowa General Assembly, recognizing the increased demand for water to support the growth of industries and municipalities, approved funding for the first year of a multi-year evaluation and modeling of Iowa’s major aquifers by the Iowa Department of Natural Resources. The task of conducting this evaluation and modeling was assigned to the Iowa Geological and Water Survey (IGWS). The first aquifer to be studied was the Lower Dakota aquifer in a sixteen county area of northwest Iowa.
Resumo:
Excessive speed is often cited as a primary driver factor in crashes, particularly rural two-lane crashes. It has also been suggested that speed plays a significant role in crashes on curves. However, the relationship between speed and crashes on curves is not well documented because it is difficult to determine driver speed after the fact when investigating a crash. One method to begin documenting this relationship is to explore the relationship between lateral position and speed as a crash surrogate. For this study, the researchers collected speed and lateral position data for three rural two-lane curves. The relationship between lateral position and speed was assessed by comparing the odds of a near-lane crossing for vehicles traveling 5 or more mph over the advisory speed to those for vehicles traveling below that threshold.
Resumo:
The Federal Highway Administration (FHWA) estimates that 58 percent of roadway fatalities are lane departures, while 40 percent of fatalities are single-vehicle run-off-road (SVROR) crashes. Addressing lane-departure crashes is therefore a priority for national, state, and local roadway agencies. Horizontal curves are of particular interest because they have been correlated with increased crash occurrence. This toolbox was developed to assist agencies address crashes at rural curves. The main objective of this toolbox is to summarize the effectiveness of various known curve countermeasures. While education, enforcement, and policy countermeasures should also be considered, they were not included given the toolbox focuses on roadway-based countermeasures. Furthermore, the toolbox is geared toward rural two-lane curves. The research team identified countermeasures based on their own research, through a survey of the literature, and through discussions with other professionals. Coverage of curve countermeasures in this toolbox is not necessarily comprehensive. For each countermeasure covered, this toolbox includes the following information: description, application, effectiveness, advantages, and disadvantages.
Resumo:
The objective of this research is to determine whether the nationally calibrated performance models used in the Mechanistic-Empirical Pavement Design Guide (MEPDG) provide a reasonable prediction of actual field performance, and if the desired accuracy or correspondence exists between predicted and monitored performance for Iowa conditions. A comprehensive literature review was conducted to identify the MEPDG input parameters and the MEPDG verification/calibration process. Sensitivities of MEPDG input parameters to predictions were studied using different versions of the MEPDG software. Based on literature review and sensitivity analysis, a detailed verification procedure was developed. A total of sixteen different types of pavement sections across Iowa, not used for national calibration in NCHRP 1-47A, were selected. A database of MEPDG inputs and the actual pavement performance measures for the selected pavement sites were prepared for verification. The accuracy of the MEPDG performance models for Iowa conditions was statistically evaluated. The verification testing showed promising results in terms of MEPDG’s performance prediction accuracy for Iowa conditions. Recalibrating the MEPDG performance models for Iowa conditions is recommended to improve the accuracy of predictions. ****************** Large File**************************
Resumo:
The Federal Highway Administration (FHWA) estimates that 58 percent of roadway fatalities are lane departures, while 40 percent of fatalities are single-vehicle run-off-road (SVROR) crashes. Addressing lane-departure crashes is therefore a priority for national, state, and local roadway agencies. Horizontal curves are of particular interest because they have been correlated with increased crash occurrence. This toolbox was developed to assist agencies address crashes at rural curves. The main objective of this toolbox is to summarize the effectiveness of various known curve countermeasures. While education, enforcement, and policy countermeasures should also be considered, they were not included given the toolbox focuses on roadway-based countermeasures. Furthermore, the toolbox is geared toward rural two-lane curves. The research team identified countermeasures based on their own research, through a survey of the literature, and through discussions with other professionals. Coverage of curve countermeasures in this toolbox is not necessarily comprehensive. For each countermeasure covered, this toolbox includes the following information: description, application, effectiveness, advantages, and disadvantages.
Resumo:
The work described in this report documents the activities performed for the evaluation, development, and enhancement of the Iowa Department of Transportation (DOT) pavement condition information as part of their pavement management system operation. The study covers all of the Iowa DOT’s interstate and primary National Highway System (NHS) and non-NHS system. A new pavement condition rating system that provides a consistent, unified approach in rating pavements in Iowa is being proposed. The proposed 100-scale system is based on five individual indices derived from specific distress data and pavement properties, and an overall pavement condition index, PCI-2, that combines individual indices using weighting factors. The different indices cover cracking, ride, rutting, faulting, and friction. The Cracking Index is formed by combining cracking data (transverse, longitudinal, wheel-path, and alligator cracking indices). Ride, rutting, and faulting indices utilize the International Roughness Index (IRI), rut depth, and fault height, respectively.
Resumo:
Hydrologic analysis is a critical part of transportation design because it helps ensure that hydraulic structures are able to accommodate the flow regimes they are likely to see. This analysis is currently conducted using computer simulations of water flow patterns, and continuing developments in elevation survey techniques result in higher and higher resolution surveys. Current survey techniques now resolve many natural and anthropogenic features that were not practical to map and, thus, require new methods for dealing with depressions and flow discontinuities. A method for depressional analysis is proposed that uses the fact that most anthropogenically constructed embankments are roughly more symmetrical with greater slopes than natural depressions. An enforcement method for draining depressions is then analyzed on those depressions that should be drained. This procedure has been evaluated on a small watershed in central Iowa, Walnut Creek of the South Skunk River, HUC12 # 070801050901, and was found to accurately identify 88 of 92 drained depressions and place enforcements within two pixels, although the method often tries to drain prairie pothole depressions that are bisected by anthropogenic features.
Resumo:
In work-zone configurations where lane drops are present, merging of traffic at the taper presents an operational concern. In addition, as flow through the work zone is reduced, the relative traffic safety of the work zone is also reduced. Improving work-zone flow-through merge points depends on the behavior of individual drivers. By better understanding driver behavior, traffic control plans, work zone policies, and countermeasures can be better targeted to reinforce desirable lane closure merging behavior, leading to both improved safety and work-zone capacity. The researchers collected data for two work-zone scenarios that included lane drops with one scenario on the Interstate and the other on an urban arterial roadway. The researchers then modeled and calibrated these scenarios in VISSIM using real-world speeds, travel times, queue lengths, and merging behaviors (percentage of vehicles merging upstream and near the merge point). Once built and calibrated, the researchers modeled strategies for various countermeasures in the two work zones. The models were then used to test and evaluate how various merging strategies affect safety and operations at the merge areas in these two work zones.
Resumo:
The main function of a roadway culvert is to effectively convey drainage flow during normal and extreme hydrologic conditions. This function is often impaired due to the sedimentation blockage of the culvert. This research sought to understand the mechanics of sedimentation process at multi-box culverts, and develop self-cleaning systems that flush out sediment deposits using the power of drainage flows. The research entailed field observations, laboratory experiments, and numerical simulations. The specific role of each of these investigative tools is summarized below: a) The field observations were aimed at understanding typical sedimentation patterns and their dependence on culvert geometry and hydrodynamic conditions during normal and extreme hydrologic events. b) The laboratory experiments were used for modeling sedimentation process observed insitu and for testing alternative self-cleaning concepts applied to culverts. The major tasks for the initial laboratory model study were to accurately replicate the culvert performance curves and the dynamics of sedimentation process, and to provide benchmark data for numerical simulation validation. c) The numerical simulations enhanced the understanding of the sedimentation processes and aided in testing flow cases complementary to those conducted in the model reducing the number of (more expensive) tests to be conducted in the laboratory. Using the findings acquired from the laboratory and simulation works, self-cleaning culvert concepts were developed and tested for a range of flow conditions. The screening of the alternative concepts was made through experimental studies in a 1:20 scale model guided by numerical simulations. To ensure the designs are effective, performance studies were finally conducted in a 1:20 hydraulic model using the most promising design alternatives to make sure that the proposed systems operate satisfactory under closer to natural scale conditions.
Resumo:
The objective of this project was to evaluate low-cost measures to reduce speeds on high-crash horizontal curves. The researchers evaluated two low-cost treatments in Iowa to determine their effectiveness in reducing speeds on rural two-lane roadways. This report summarizes how the research team selected sites and collected data, and the results. The team selected six sites. Retroreflective post treatments were added to existing chevrons at four sites and on-pavement curve markings were added at two sites. The researchers collected speed data before and after installation of the two treatments. The study compared several speed metrics to assess the effectiveness of the treatments. Overall, both were moderately effective in reducing speeds. The most significant impact of the treatments was in reducing the percentage of vehicles traveling over the posted or advisory speed by 5, 10, 15, or 20 or more mph. This result suggests that the treatments are most effective in reducing high-end speeds.