6 resultados para Microstructured fibers

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Standard Specifications for this project included requirements for placing two 500 foot test sections of Type B asphaltic concrete with 1-1/2 per cent asbestos fibres (mix size 3/8 inch, lift thickness 3/4 inch) as part of the regular construction of the surface course. These requirements were designed to provide asbestos modified mixtures for laboratory analysis and road performance evaluation. This report provides the preliminary results and analysis of test data obtained from tests on the mixtures placed on the roadway. Previous research by G. S. Zuelke (1) and J. H. Kestzman et al (2) indicated that asphaltic concrete mixtures modified with asbestos fibres improved stability, decreased permeability, and allowed the use of higher bitumen contents. This study indicated that the addition of asbestos fibres would permit the use of higher bitumen contents, theoretically improving durability, without adverse results. An indication was also obtained to the effect that asbestos mixtures were more difficult to compact in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ten bridges were chosen to have their concrete barrier rails constructed with one rail having "Fibermesh" synthetic fibers added and the other rail without the fibers. The rails were constructed in 1985, 1986, or 1987. All the bridges were inspected in 1988 and no consistent reduction in cracking was achieved using Fibermesh fibers in the p.c. concrete bridge barrier rails.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Greene County, Iowa overlay project, completed in October 1973, was inspected on October 16 & 17, 1978 After five years of service The 33 fibrous concrete sections, four CRCP sections, two mesh reinforced and two plain concrete sections with doweled reinforcement were rated relative to each other on a scale of 0 t o 100. The rating was conducted by the original members of the Project Planning Committee, Iowa DOT, Iowa Counties, Federal Highway Administration, University of Illinois and industry representatives . In all , there were 23 representatives who rated this project . The 23 values were then averaged to provide a final rating number for each section. The highest panel rating (90) was assigned to the 5-inch thick , deformed barre in forced PCC sections ; an 86t o a 3-inch thick , 160 lbs. of fiber and 600 lbs . of cement on a partial bonded surface ; an 84 to the 4-inch CRC with elastic joints (bonded) and an 84 to a 4-inch mesh reinforce section. One of the major factors influencing performance appears t o be the thickness. In the fibrous concrete overlay, The greatest influences appears t o be the fiber content. Overlay Sections containing 160 1b/yd3 of Fiber are, in almost all cases , outperforming those c o n t a i n i n g 60 or 100. It is obvious at This time meth at the 3-inch thick fibrous concrete overlays are, in general, out performing the 2-inch thick sections. The performance of the fibrous concrete the overlay appears to be favorably influenced by: (1) The use of higher a spectra fiber (0.025 x 2.5 i n c h e s ) v e r s u s (0.010 x 0.022 x 1.0 inches) (2) The use of a lower cement c o n t e n t ( 600 versus 750 1b/yd3) However, The set less well defined and the improvements in overlay performance attributed to high aspect ratio fibers and low cement contents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several primary techniques have been developed through which soil aggregate road material properties may be improved. Such techniques basically involve a mechanism of creating a continuous matrix system of soil and/or aggregate particles, interlocked through the use of some additive such as portland cement, lime, or bituminous products. Details by which soils are stabilized vary greatly, but they are dependent on the type of stabilizing agent and nature of the soil, though the overall approach to stabilization has the common feature that improvement is achieved by some mechanism(s) forcing individual particles to adhere to one another. This process creates a more rigid material, most often capable of resisting the influx of water during freezing, loss of strength due to high moisture content and particle dispersion during thawing, and loss of strength due to migration of fines and/or water by capillarity and pumping. The study reported herein, took a new and relatively different approach to strengthening of soils, i.e., improvement of roadway soils and/or soil-aggregate materials by structural reinforcement with randomly oriented fibers. The purpose of the study was to conduct a laboratory and field investigation into the potential of improving (a) soil-aggregate surfaced and subgrade materials, including those that are frost-prone and/or highly moisture susceptible, and (b) localized base course materials, by uniting such materials through fibrous reinforcement. The envisioned objective of the project was the development of a simple construction technique(s) that could be (a) applied on a selective basis to specific areas having a history of poor performance, or (b) used for improvement of potential base materials prior to surfacing. Little background information on such purpose and objective was available. Though the envisioned process had similarities to fibrous reinforced concrete, and to fibrous reinforced resin composites, the process was devoid of a cementitious binder matrix and thus highly dependent on the cohesive and frictional interlocking processes of a soil and/or aggregate with the fibrous reinforcement; a condition not unlike the introduction of reinforcing bars into a concrete sand/aggregate mixture without benefit of portland cement. Thus the study was also directed to answering some fundamental questions: (1) would the technique work; (2) what type or types of fibers are effective; (3) are workable fibers commercially available; and (4) can such fibers be effectively incorporated with conventional construction equipment, and employed in practical field applications? The approach to obtaining answers to these questions, was guided by the philosophy that an understanding of basic fundamentals was essential to developing a body of engineering knowledge, that would serve as the basis for eventual development of design procedures with fibrous products for the applications previously noted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major problem with durability of asphalt cement concrete (ACC) overlays to rehabilitate jointed portland cement concrete (PCC) pavement comes from reflective cracking. The objective of this research was to evaluate the effectiveness of Glasgrid in regard to preventing reflection cracking. Glasgrid is a glass fiber mesh with 1/2 inch by 1 inch openings (Figure 1). Each strand is composed of many small glass fibers. After the grid is formed, it is coated with a polymer modified asphalt cement. In 1986, four experimental Glasgrid test sections were incorporated into Polk County project IR-35-2(191)67--12-77 on Interstate 35 from IA 5 to the west 1-80 interchange on the west edge of Des Moines, Single and double layers of Glasgrid were placed over transverse cracks and joints of the existing PCC pavement. The Glasgrid was placed on the PCC pavement for one section and between lifts of the ACC resurfacing on the other three sections. The four Glasgrid sections were compared to two sections without Glasgrid for four years. The sections were reviewed annually to determine how many cracks or joints had reflected through the resurfacing. Glasgrid placed on the PCC pavement was more effective at preventing reflection cracking than Glasgrid between lifts of AC resurfacing. In general, Glasgrid yielded a small reduction or retardation in the amount of reflection cracking, but not sufficient to justify additional expense for the use of Glasgrid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An 11.6 km research project was constructed in 1994 on a portion of Iowa Highway 21 in Iowa County, from U.S. 6 to Iowa Highway 212. This research is intended to evaluate the effect of four primary variables on long term performances of the PCC concrete overlay, commonly called whitetopping. The variables are thickness (50 mm, 100 mm, 150 mm, and 200 mm), joint spacing (0.6 m squares, 1.2 m squares, 1.8 m squares, and 4.6 m spacing), fiber use (concrete with and without polypropolene fibers) and surface preparation (patch only, scarifying the surface, and cold-in-place recycling). After two years, only two sections exhibit a small amount of debonding and distress cracking. Both sections are 50 mm thick. Within each of these two sections, only 2% of the area is affected. Two other 50 mm thick sections have a small number of cracks but no debonding has been found. No adverse effects of these cracks are evident. Three asphalt overlay sections were also constructed. In each asphalt section, transverse cracks have recently been found. At two years of age, the research sections are performing very well. An insignificant number of cracks and no distressed areas have been found in any research sections thicker than 50 mm.