3 resultados para Microstructure

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concrete curing is closely related to cement hydration, microstructure development, and concrete performance. Application of a liquid membrane-forming curing compound is among the most widely used curing methods for concrete pavements and bridge decks. Curing compounds are economical, easy to apply, and maintenance free. However, limited research has been done to investigate the effectiveness of different curing compounds and their application technologies. No reliable standard testing method is available to evaluate the effectiveness of curing, especially of the field concrete curing. The present research investigates the effects of curing compound materials and application technologies on concrete properties, especially on the properties of surface concrete. This report presents a literature review of curing technology, with an emphasis on curing compounds, and the experimental results from the first part of this research—lab investigation. In the lab investigation, three curing compounds were selected and applied to mortar specimens at three different times after casting. Two application methods, single- and double-layer applications, were employed. Moisture content, conductivity, sorptivity, and degree of hydration were measured at different depths of the specimens. Flexural and compressive strength of the specimens were also tested. Statistical analysis was conducted to examine the relationships between these material properties. The research results indicate that application of a curing compound significantly increased moisture content and degree of cement hydration and reduced sorptivity of the near-surface-area concrete. For given concrete materials and mix proportions, optimal application time of curing compounds depended primarily upon the weather condition. If a sufficient amount of a high-efficiency-index curing compound was uniformly applied, no double-layer application was necessary. Among all test methods applied, the sorptivity test is the most sensitive one to provide good indication for the subtle changes in microstructure of the near-surface-area concrete caused by different curing materials and application methods. Sorptivity measurement has a close relation with moisture content and degree of hydration. The research results have established a baseline for and provided insight into the further development of testing procedures for evaluation of curing compounds in field. Recommendations are provided for further field study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The freeze-thaw resistance of concretes was studied. Nine concrete mixes, made with five cements and cement-Class C fly ash combinations, were exposed to freeze-thaw cycling following 110 to 222 days of moist curing. Prior to the freeze-thaw cycling, the specimens were examined by a low-vacuum scanning electron microscope (SEM) for their microstructure. The influence of a wet/dry treatment was also studied. Infilling of ettringite in entrained air voids was observed in the concretes tested. The extent of the infilling depends on the period of moist curing as well as the wet/dry treatment. The concretes with 15% Class C fly ash replacement show more infilling in their air voids. It was found that the influence of the infilling on the freeze-thaw durability relates to the air spacing factor. The greater the spacing factor, the more expansion under the freeze-thaw cycling. The infilling seems to decrease effective air content and to increase effective spacing factor. The infilling also implies that the filled air voids are water-accessible. These might lead to concrete more vulnerable to the freeze-thaw attack. By combining the above results with field observations, one may conclude that the freeze-thaw damage is a factor related to premature deterioration of portland cement concrete pavements in Iowa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Examination of field portland cement concrete cores, from Iowa pavements with premature deterioration, reveals extensive infilling of calcium sulfate aluminum (CSA) compound in their air voids. A previous study (Phase I) has shown some evidence of the correlation between freeze-thaw durability of concretes and ettringite infilling. To further verify the previous observation, a more extensive experimental program was conducted in this Phase 2 study. A total of 101 concrete mixes were examined. Seven cements, six fly ashes, two water reducers and three coarse aggregates were used in the concrete mixes. Specimens were under moist curing for up to 223 days before being subjected to the freeze-thaw cycling. An environmental treatment consisting of three consecutive wet [70 deg F (21 deg C) in distilled water]/dry [120 deg F (49 deg C) in oven] cycles was applied to some specimens. Immediately prior to the freeze-thaw cycling, most specimens were examined by a low-vacuum scanning electron microscope (SEM) for their microstructure. The results obtained further demonstrate the correlation between concrete freeze-thaw response and CSA compound infilling in the air voids. The extent of the infilling depends on the period of moist curing as well as the wet/dry treatment. The extent of the infilling also relates to materials used. Concrete mixes with extensive infilling are more vulnerable to the freeze-thaw attack. Based on the obtained results, material criteria on cements and fly ashes for mainline paving were proposed for minimizing potential infilling of CSA compound in concrete.