22 resultados para Microscopy of materials
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The major objective of this project is to evaluate image analysis for characterizing air voids in Portland cement contract (PCC) and asphalt concrete (AC) and aggregate gradation in asphalt concrete. Phase 1 of this project has concentrated on evaluation and refinement of sample preparation techniques, evaluation of methods and instruments for conducting image analysis, and finally, analysis and comparison of a select portion of samples. Preliminary results suggest a strong correlation between the results obtained from the linear traverse method and image analysis methods for determining percent air voids in concrete. Preliminary work with asphalt samples has shown that damage caused by a high vacuum of the conventional scanning electron microscope (SEM) may too disruptive. Alternative solutions have been explored, including confocal microscopy and low vacuum electron microscopy. Additionally, a conventional high vacuum SEM operating at a marginal operating vacuum may suffice.
Resumo:
This bibliography was compiled by two reference librarians, Patricia Dawson and David Hudson with the goal of making it easier of tracking down material on Iowa history and culture. This supplements the Iowa History Reference Guide published in 1952 by William Petersen.
Resumo:
As a result of forensic investigations of problems across Iowa, a research study was developed aimed at providing solutions to identified problems through better management and optimization of the available pavement geotechnical materials and through ground improvement, soil reinforcement, and other soil treatment techniques. The overall goal was worked out through simple laboratory experiments, such as particle size analysis, plasticity tests, compaction tests, permeability tests, and strength tests. A review of the problems suggested three areas of study: pavement cracking due to improper management of pavement geotechnical materials, permeability of mixed-subgrade soils, and settlement of soil above the pipe due to improper compaction of the backfill. This resulted in the following three areas of study: (1) The optimization and management of earthwork materials through general soil mixing of various select and unsuitable soils and a specific example of optimization of materials in earthwork construction by soil mixing; (2) An investigation of the saturated permeability of compacted glacial till in relation to validation and prediction with the Enhanced Integrated Climatic Model (EICM); and (3) A field investigation and numerical modeling of culvert settlement. For each area of study, a literature review was conducted, research data were collected and analyzed, and important findings and conclusions were drawn. It was found that optimum mixtures of select and unsuitable soils can be defined that allow the use of unsuitable materials in embankment and subgrade locations. An improved model of saturated hydraulic conductivity was proposed for use with glacial soils from Iowa. The use of proper trench backfill compaction or the use of flowable mortar will reduce the potential for developing a bump above culverts.
Resumo:
The issue of corrosion of winter maintenance equipment is becoming of greater concern because of the increased use of liquid solutions of ice control chemicals, as opposed to their application in solid form. Being in liquid form, the ice control chemicals can more easily penetrate into the nooks and crannies on equipment and avoid being cleansed from the vehicle. Given this enhanced corrosive ability, methods must be found to minimize corrosion. The methods may include coatings, additives, cleansing techniques, other methods, and may also include doing nothing, and accepting a reduced equipment lifetime as a valid (perhaps) trade off with the enhanced benefits of using liquid ice control chemicals. In reality, some combination of these methods may prove to be optimal. Whatever solutions are selected, they must be relatively cheap and durable. The latter point is critical because of the environment in which maintenance trucks operate, in which scrapes, scratches and dents are facts of life. Protection methods that are not robust simply will not work. The purpose of this study is to determine how corrosion occurs on maintenance trucks, to find methods that would minimize the major corrosion mechanisms, and to
Resumo:
This project utilized information from ground penetrating radar (GPR) and visual inspection via the pavement profile scanner (PPS) in proof-of-concept trials. GPR tests were carried out on a variety of portland cement concrete pavements and laboratory concrete specimens. Results indicated that the higher frequency GPR antennas were capable of detecting subsurface distress in two of the three pavement sites investigated. However, the GPR systems failed to detect distress in one pavement site that exhibited extensive cracking. Laboratory experiments indicated that moisture conditions in the cracked pavement probably explain the failure. Accurate surveys need to account for moisture in the pavement slab. Importantly, however, once the pavement site exhibits severe surface cracking, there is little need for GPR, which is primarily used to detect distress that is not observed visually. Two visual inspections were also conducted for this study by personnel from Mandli Communications, Inc., and the Iowa Department of Transportation (DOT). The surveys were conducted using an Iowa DOT video log van that Mandli had fitted with additional equipment. The first survey was an extended demonstration of the PPS system. The second survey utilized the PPS with a downward imaging system that provided high-resolution pavement images. Experimental difficulties occurred during both studies; however, enough information was extracted to consider both surveys successful in identifying pavement surface distress. The results obtained from both GPR testing and visual inspections were helpful in identifying sites that exhibited materials-related distress, and both were considered to have passed the proof-of-concept trials. However, neither method can currently diagnose materials-related distress. Both techniques only detected the symptoms of materials-related distress; the actual diagnosis still relied on coring and subsequent petrographic examination. Both technologies are currently in rapid development, and the limitations may be overcome as the technologies advance and mature.
Resumo:
Pavement marking materials other than conventional paint must be evaluated as environmental standards become more restrictive. The new EPA classification for solvents states that all oil paints are photochemically reactive and, therefore, contribute to smog. This will eventually result in the elimination of organic solvents from all paints, which may occur in Iowa by 1985. The Special Investigations Section of the Office of Materials field reviewed all urban and rural applications of pavement marking materials in the spring of 1979. The field review consisted of a visual estimation of percent marking missing, percent satisfactory, and percent non-satisfactory; reflective readings by ERMA; and notation of special conditions which may have impacted performance. ERMA was not effective in evaluating the reflective quality of pavement marking materials. No pavement marking materials evaluated have been successful enough to date to totally replace conventional painting methods.
Resumo:
The function of dowel bars is the transfer of a load across the transverse joint from one pavement slab to the adjoining slab. In the past, these transfer mechanisms have been made of steel. However, pavement damage such as loss of bonding, deterioration, hollowing, cracking and spalling start to occur when the dowels begin to corrode. A significant amount of research has been done to evaluate alternative types of materials for use in the reinforcement of concrete pavements. Initial findings have indicated that stainless steel and fiber composite materials possess properties, such as flexural strength and corrosion resistance, that are equivalent to the Department of Transportation specifications for standard steel, 1 1/2 inch diameter dowel bars. Several factors affect the load transfer of dowels; these include diameter, alignment, grouting, bonding, spacing, corrosion resistance, joint spacing, slab thickness and dowel embedment length. This research is directed at the analysis of load transfer based on material type and dowel spacing. Specifically, this research is directed at analyzing the load transfer characteristics of: (a) 8-inch verses 12-inch spacing, and (b) alternative dowel material compared to epoxy coated steel dowels, will also be analyzed. This report documents the installation of the test sections, placed in 1997. Dowel material type and location are identified. Construction observations and limitations with each dowel material are shown.
Resumo:
The Iowa Railway Finance Authority (IRFA) was created in 1980 by the 68th General Assembly to provide for the financing of rail facilities and to enhance and continue the operation of essential rail facilities. IRFA was authorized to offer financial assistance for the acquisition, rehabilitation, construction, refinancing, extension, replacement, maintenance, repair, or leasing of any rail facility. Rail Revolving Loan and Grant Program The 2005 legislative session amended Iowa Code 327H.20 by assigning all repayments of IRFA and other Iowa Department of Transportation (Iowa DOT) rail assistance loans to the Rail Revolving Loan and Grant Program (RRLGP). In addition, the following annual appropriations were allocated to the fund: • FY 2007: $235,000 • FY 2008: $2 million • FY 2009: $2 million Since the creation of the RRLGP in 2005, IRFA has awarded funding to 23 projects totaling over $7.2 million in grants and loans in its three rounds of competitive funding. These projects have pledged to create 1,672 jobs within two years of project completion and 1,361 jobs have been retained. Funded projects are associated with over $2 billion in total private capital investment. In 2008, the IRFA Board directed all available funds be used to help repair railroads devastated by summer flooding. On July 31, $3.9 million in deferred payment loans were offered to seven Iowa based railroads to allow for immediate repair of rail beds, including the cost of materials, labor and equipment.
Resumo:
Pavement marking technology is a continually evolving subject. There are numerous types of materials used in the field today, including (but not limited to) paint, epoxy, tape, and thermoplastic. Each material has its own set of unique characteristics related to durability, retro reflectivity, installation cost, and life-cycle cost. The Iowa Highway Research Board was interested in investigating the possibility of developing an ongoing program to evaluate the various products used in pavement marking. This potential program would maintain a database of performance and cost information to assist state and local agencies in determining which materials and placement methods are most appropriate for their use. The Center for Transportation Research and Education at Iowa State University has completed Phase I of this research: to identify the current practice and experiences from around the United States to recommend a further course of action for the State of Iowa. There has been a significant amount of research completed in the last several years. Research from Michigan, Pennsylvania, South Dakota, Ohio, and Alaska all had some common findings: white markings are more retro reflective than yellow markings; paint is by-and-large the least expensive material; paint tends to degrade faster than other materials; thermoplastic and tapes had higher retro reflective characteristics. Perhaps the most significant program going on in the area of pavement markings is the National Transportation Product Evaluation Program (NTPEP). This is an ongoing research program jointly conducted by the American Association of State Highway and Transportation Officials and its member states. Field and lab tests on numerous types of pavement marking materials are being conducted at sites representing four climatological areas. These results are published periodically for use by any jurisdiction interested in pavement marking materials performance.At this time, it is recommended that the State of Iowa not embark on a test deck evaluation program. Instead, close attention should be paid to the ongoing evaluations of the NTPEP program. Materials that fare well on the NTPEP test de cks should be considered for further field studies in Iowa.
Resumo:
Previous Iowa DOT sponsored research has shown that some Class C fly ashes are ementitious (because calcium is combined as calcium aluminates) while other Class C ashes containing similar amounts of elemental calcium are not (1). Fly ashes from modern power plants in Iowa contain significant amounts of calcium in their glassy phases, regardless of their cementitious properties. The present research was based on these findings and on the hyphothesis that: attack of the amorphous phase of high calcium fly ash could be initiated with trace additives, thus making calcium available for formation of useful calcium-silicate cements. Phase I research was devoted to finding potential additives through a screening process; the likely chemicals were tested with fly ashes representative of the cementitious and non-cementitious ashes available in the state. Ammonium phosphate, a fertilizer, was found to produce 3,600 psi cement with cementitious Neal #4 fly ash; this strength is roughly equivalent to that of portland cement, but at about one-third the cost. Neal #2 fly ash, a slightly cementitious Class C, was found to respond best with ammonium nitrate; through the additive, a near-zero strength material was transformed into a 1,200 psi cement. The second research phase was directed to optimimizing trace additive concentrations, defining the behavior of the resulting cements, evaluating more comprehensively the fly ashes available in Iowa, and explaining the cement formation mechanisms of the most promising trace additives. X-ray diffraction data demonstrate that both amorphous and crystalline hydrates of chemically enhanced fly ash differ from those of unaltered fly ash hydrates. Calciumaluminum- silicate hydrates were formed, rather than the expected (and hypothesized) calcium-silicate hydrates. These new reaction products explain the observed strength enhancement. The final phase concentrated on laboratory application of the chemically-enhanced fly ash cements to road base stabilization. Emphasis was placed on use of marginal aggregates, such as limestone crusher fines and unprocessed blow sand. The nature of the chemically modified fly ash cements led to an evaluation of fine grained soil stabilization where a wide range of materials, defined by plasticity index, could be stabilized. Parameters used for evaluation included strength, compaction requirements, set time, and frost resistance.
Resumo:
Pavement marking technology is a continually evolving subject. There are numerous types of materials used in the field today, including (but not limited to) paint, epoxy, tape, and thermoplastic. Each material has its own set of unique characteristics related to durability, retroreflectivity, installation cost, and life-cycle cost. The Iowa Highway Research Board was interested in investigating the possibility of developing an ongoing program to evaluate the various products used in pavement marking. This potential program would maintain a database of performance and cost information to assist state and local agencies in determining which materials and placement methods are most appropriate for their use. The Center for Transportation Research and Education at Iowa State University has completed Phase I of this research: to identify the current practice and experiences from around the United States to recommend a further course of action for the State of Iowa. There has been a significant amount of research completed in the last several years. Research from Michigan, Pennsylvania, South Dakota, Ohio, and Alaska all had some common findings: white markings are more retroreflective than yellow markings; paint is by-and-large the least expensive material; paint tends to degrade faster than other materials; thermoplastic and tapes had higher retroreflective characteristics. Perhaps the most significant program going on in the area of pavement markings is the National Transportation Product Evaluation Program (NTPEP). This is an ongoing research program jointly conducted by the American Association of State Highway and Transportation Officials and its member states. Field and lab tests on numerous types of pavement marking materials are being conducted at sites representing four climatological areas. These results are published periodically for use by any jurisdiction interested in pavement marking materials performance. At this time, it is recommended that the State of Iowa not embark on a test deck evaluation program. Instead, close attention should be paid to the ongoing evaluations of the NTPEP program. Materials that fare well on the NTPEP test de cks should be considered for further field studies in Iowa.
Resumo:
Recently, a number of roads have begun to exhibit the onset of deterioration at relatively early ages. Since this deterioration appears to be the result of materials issues, data concerning raw materials, design, and paving conditions have been collected and analyzed for correlation between independent variables and deterioration. This analysis shows that there is a positive and statistically significant correlation between deterioration and the following variables: alkali and sulfate content of the cementitious materials, impermeable base course, paving temperature, and the presence of fly ash. This study also concludes that there is a significant need for improvement in data collection and maintenance by many organizations responsible for the production of concrete.
Resumo:
This is a classed bibliography of materials by Iowans or about Iowa. It is drawn from the publications: Iowa and Some Iowans, 1988 and New Iowa Materials, 1990 to assist the needs of teachers of Iowa history and literature.
Resumo:
This report is one of two products for this project with the other being a design guide. This report describes test results and comparative analysis from 16 different portland cement concrete (PCC) pavement sites on local city and county roads in Iowa. At each site the surface conditions of the pavement (i.e., crack survey) and foundation layer strength, stiffness, and hydraulic conductivity properties were documented. The field test results were used to calculate in situ parameters used in pavement design per SUDAS and AASHTO (1993) design methodologies. Overall, the results of this study demonstrate how in situ and lab testing can be used to assess the support conditions and design values for pavement foundation layers and how the measurements compare to the assumed design values. The measurements show that in Iowa, a wide range of pavement conditions and foundation layer support values exist. The calculated design input values for the test sites (modulus of subgrade reaction, coefficient of drainage, and loss of support) were found to be different than typically assumed. This finding was true for the full range of materials tested. The findings of this study support the recommendation to incorporate field testing as part of the process to field verify pavement design values and to consider the foundation as a design element in the pavement system. Recommendations are provided in the form of a simple matrix for alternative foundation treatment options if the existing foundation materials do not meet the design intent. The PCI prediction model developed from multi-variate analysis in this study demonstrated a link between pavement foundation conditions and PCI. The model analysis shows that by measuring properties of the pavement foundation, the engineer will be able to predict long term performance with higher reliability than by considering age alone. This prediction can be used as motivation to then control the engineering properties of the pavement foundation for new or re-constructed PCC pavements to achieve some desired level of performance (i.e., PCI) with time.
Resumo:
Due to the low workability of slipform concrete mixtures, the science of rheology is not strictly applicable for such concrete. However, the concept of rheological behavior may still be considered useful. A novel workability test method (Vibrating Kelly Ball or VKelly test) that would quantitatively assess the responsiveness of a dry concrete mixture to vibration, as is desired of a mixture suitable for slipform paving, was developed and evaluated. The objectives of this test method are for it to be cost-effective, portable, and repeatable while reporting the suitability of a mixture for use in slipform paving. The work to evaluate and refine the test was conducted in three phases: 1. Assess whether the VKelly test can signal variations in laboratory mixtures with a range of materials and proportions 2. Run the VKelly test in the field at a number of construction sites 3. Validate the VKelly test results using the Box Test developed at Oklahoma State University for slipform paving concrete The data collected to date indicate that the VKelly test appears to be suitable for assessing a mixture’s response to vibration (workability) with a low multiple operator variability. A unique parameter, VKelly Index, is introduced and defined that seems to indicate that a mixture is suitable for slipform paving when it falls in the range of 0.8 to 1.2 in./√s.