4 resultados para Metals mass balances
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Key Points: • Iowa’s exceptional agricultural productivity is dependent upon nutrient‐rich soils with high carbon and nitrogen stocks. • Soil carbon and nitrogen stocks in Iowa corn‐soybean rotations are at significant risk of long‐term decline. • Soil carbon and nitrogen stocks are a function of crop residue inputs. • Nutrient input levels that do not maximize crop yield and residue production are likely to reduce soil carbon and nitrogen stocks. • If soil carbon and nitrogen stocks decline, water quality improvements become more difficult. • Soil carbon and nitrogen balances are extremely difficult to measure, but positive balances are essential to the future of Iowa agriculture. Recommended Actions: • Accurate measurement of soil carbon and nitrogen balances is exceptionally difficult, but can be accomplished with sufficient investment and long‐term planning. • The ideal approach will include a combination of measurements from farms and experimental networks that manipulate nutrient inputs. • With proper planning and cooperation, Iowa State University and the Iowa Department of Agriculture and Land Stewardship can address the concerns raised in this report regarding the future of Iowa’s soil resource and agricultural productivity.
Resumo:
Report on applying agreed-upon procedures to the Villisca Municipal Power Plant’s accounting procedures, cash and investment balances and compliance with Code of Iowa requirements for the period February 1, 2007 through December 31, 2010
Resumo:
The AASHO specifications for highway bridges require that in designing a bridge, the live load must be multiplied by an impact factor for which a formula is given, dependent only upon the length of the bridge. This formula is a result of August Wohler's tests on fatigue in metals, in which he determined that metals which are subjected to large alternating loads will ultimately fail at lower stresses than those which are subjected only to continuous static loads. It is felt by some investigators that this present impact factor is not realistic, and it is suggested that a consideration of the increased stress due to vibrations caused by vehicles traversing the span would result in a more realistic impact factor than now exists. Since the current highway program requires a large number of bridges to be built, the need for data on dynamic behavior of bridges is apparent. Much excellent material has already been gathered on the subject, but many questions remain unanswered. This work is designed to investigate further a specific corner of that subject, and it is hoped that some useful light may be shed on the subject. Specifically this study hopes to correlate, by experiment on a small scale test bridge, the upper limits of impact utilizing a stationary, oscillating load to represent axle loads moving past a given point. The experiments were performed on a small scale bridge which is located in the basement of the Iowa Engineering Experiment Station. The bridge is a 25 foot simply supported span, 10 feet wide, supported by four beams with a composite concrete slab. It is assumed that the magnitude of the predominant forcing function is the same as the magnitude of the dynamic force produced by a smoothly rolling load, which has a frequency determined by the passage of axles. The frequency of passage of axles is defined as the speed of the vehicle divided by the axle spacing. Factors affecting the response of the bridge to this forcing function are the bridge stiffness and mass, which determine the natural frequency, and the effects of solid damping due to internal structural energy dissipation.
Resumo:
The early-age thermal development of structural mass concrete elements has a significant impact on the future durability and longevity of the elements. If the heat of hydration is not controlled, the elements may be susceptible to thermal cracking and damage from delayed ettringite formation. In the Phase I study, the research team reviewed published literature and current specifications on mass concrete. In addition, the team observed construction and reviewed thermal data from the westbound (WB) I-80 Missouri River Bridge. Finally, the researchers conducted an initial investigation of the thermal analysis software programs ConcreteWorks and 4C-Temp&Stress. The Phase II study is aimed at developing guidelines for the design and construction of mass concrete placements associated with large bridge foundations. This phase included an additional review of published literature and a more in-depth investigation of current mass concrete specifications. In addition, the mass concrete construction of two bridges, the WB I-80 Missouri River Bridge and the US 34 Missouri River Bridge, was documented. An investigation was conducted of the theory and application of 4C-Temp&Stress. ConcreteWorks and 4C-Temp&Stress were calibrated with thermal data recorded for the WB I-80 Missouri River Bridge and the US 34 Missouri River Bridge. ConcreteWorks and 4C-Temp&Stress were further verified by means of a sensitivity study. Finally, conclusions and recommendations were developed, as included in this report.