3 resultados para Membrane Proteome Profiling

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It’s a way to help you move from unemployment to reemployment with customized services that meet your individual needs and take you where you want to go — back to work! Profiling is done in the early stages of your unemployment insurance claim by looking at certain factors, such as previous occupation, previous industry, education, duration of employment, wages, etc. Depending on the availability of services, some people identified by Iowa Workforce Development Centers during this profiling process will be offered the opportunity to benefit from additional reemployment services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iowa DOT research in 1986, demonstrated that carbide tooth milling can produce an acceptable surface texture. Based upon that research, specifications were developed for "Pavement Surface Repair (Milling)". This specification was applied to reprofile a nine-mile section of badly faulted portland cement concrete (pcc) pavement on route 163 just east of Des Moines. The Profile Index (measured with a 25-foot California Profilograph) was improved from an average of 55.2 inches per mile prior to milling to 10.6 inches per mile after milling. The bid price was $0.75 per square yard for pcc containing limestone coarse aggregate and $1.21 for pcc containing gravel coarse aggregate. Carbide tooth milling should be considered as an acceptable alternate method of reprofiling even though there is some spalling of joints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main problems of bridge maintenance in Iowa is the spalling and scaling of the decks. This problem stems from the continued use of deicing salts during the winter months. Since bridges will frost or freeze more often than roadways, the use of deicing salts on bridges is more frequent. The salt which is spread onto the bridge dissolves in water and permeates into the concrete deck. When the salt reaches the depth of the reinforcing steel and the concentration at that depth reaches the threshold concentration for corrosion (1.5 lbs./yd. 3 ), the steel will begin to oxidize. The oxidizing steel must then expand within the concrete. This expansion eventually forces undersurface fractures and spalls in the concrete. The spalling increases maintenance problems on bridges and in some cases has forced resurfacing after only a few years of service. There are two possible solutions to this problem. One solution is discontinuing the use of salts as the deicing agent on bridges and the other is preventing the salt from reaching or attacking the reinforcing steel. This report deals with one method which stops the salt from reaching the reinforcing steel. The method utilizes a waterproof membrane on the surface of a bridge deck. The waterproof membrane stops the water-salt solution from entering the concrete so the salt cannot reach the reinforcing steel.