8 resultados para Mechanical vibration
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Removal of ice from roads is of the more challenging task in winter highway maintenance. The best mechanical method is to use a truck with underbody plow blade, but such equipment is not available to all agencies charged with winter maintenance operations. While counties and cities often use motor graders to scrape ice, it would be of great benefit if front mounted plows could be used effectively for ice removal. To reveal and understand the factors that influence the performance of these plows, measurement of the forces experienced by the plow blades during ice scraping is desirable. This study explores the possibility of using accelerometers to determine the forces on a front-mounted plow when scraping ice. The plow was modeled by using a dynamic approach. The forces on the plow were to be determined by the measurement of the accelerations of the plow. Field tests were conducted using an "as is" front-mounted plow instrumented with accelerometers. The results of the field tests indicate that in terms of ice removal, the front-mounted plow is not favorable equipment. The major problem in this study is that the front mounted plow was not able to cut ice, and therefore experienced no significant scraping forces. However, the use of accelerometers seems to be promising for analyzing the vibration problems of the front-mounted plow.
Resumo:
The research project, HR-110, was begun in the fall of 1964 to further investigate the compositional and mechanical properties of some of the carbonate rocks used as aggregate in portland cement concrete. Samples were taken only from those portions of the quarries that are used as aggregate in portland cement concrete by the Iowa State Highway Commission except where designated by commission personnel for purposes of evaluation of potential aggregate sources. Where practical, the samples were taken from each bed recognized by the Highway Commission geologists, and in most instances, the thicker beds were sampled at the top, middle, and bottom to detect any lithologic changes that escaped megascopic observation.
Resumo:
The Iowa Department of Transportation has noticed an increase in the occurrence of excessively vibrated portland cement concrete (PCC) pavements. The overconsolidation of PCC pavements can be observed in several sections of PCC highways across the state of Iowa. Also, excessive vibration is believed to be a factor in the premature deterioration of several pavements in Iowa. To address the problem of excessive vibration, a research project was conducted to document the vibratory practices of PCC slipform paving in Iowa and determine the effect of vibration on the air content of pavement. The primary factors studied were paver speed, vibrator frequency, and air content relative to the location of the vibrator. The study concluded that the Iowa Department of Transportation specification of 5000 and 8000 vibrations per minute (vpm) for slipform pavers is effective for normal paver speeds observed on the three test paving projects. Excessive vibration was clearly identified on one project where a vibrator frequency was found to be 12,000 vpm. When the paver speed was reduced to half the normal speed, hard air contents indicated that excessive vibration was beginning to occur in the localized area immediately surrounding the vibrator at a frequency of 8000 vpm. Analysis of variance testing indicated many variables and interactions to be significant at a 95% confidence level; however, the variables and interactions that were found to be significant varied from project to project. This affirms the complexity of the process for consolidating PCC.
Resumo:
The Iowa Department of Transportation has discovered an increase in the occurrence of excessively vibrated portland cement concrete (PCC) pavements. The overconsolidation of PCC pavements has been observed in several projects across the state. Overconsolidation is also believed to be a factor in acceleration of premature deterioration of at least two pavement projects in Iowa. To address the problem, a research project in 1995 documented the vibratory practices of PCC slipform paving in Iowa in order to determine the effect of vibration on consolidation and air content of pavement. Paver speed, vibrator frequency, and air content relative to the location of the vibrator were studied. The study concluded that the Iowa Department of Transportation specification of 5,000 to 8,000 vibrations per minute (vpm) for slipform pavers is effective for normal paver speeds on the three projects that were examined. Excessive vibration was clearly identified on one project where a vibrator frequency of 12,000 vpm was discovered. When the paver speed was reduced to half the normal speed, hard air contents indicate that excessive vibration was beginning to occur in the localized area immediately surrounding the vibrator at a frequency of 8,000 vpm. The study also indicates that the radius of influence of the vibrators is smaller than has been claimed.
Resumo:
This report briefly describes the progress of HR-110 of the Iowa Highway Research Board.
Resumo:
This report presents the results of a comparative laboratory study between well- and gap-graded aggregates used in asphalt concrete paving mixtures. A total of 424 batches of asphalt concrete mixtures and 3,960 Marshall and Hveem specimens were examined. There is strong evidence from this investigation that, with proper-combinations of aggregates and asphalts, both continuous- and gap-graded aggregates can produce mixtures of high density and of qualities meeting current design criteria. There is also reason to believe that the unqualified acceptance of some supposedly desirable, constant, mathematical relationship between adjacent particle sizes of the form such as Fuller's curve p = 100(d/D)^n is not justified. It is recommended that the aggregate grading limits be relaxed or eliminated and that the acceptance or rejection of an aggregate for use in asphalt pavement be based on individual mixture evaluation. Furthermore, because of the potential attractiveness of gap-graded asphalt concrete in cost, quality, and skid and wear resistance, selected gap-graded mixtures are recommended for further tests both in the laboratory and in the field, especially in regard to ease of compaction and skid and wear resistance.
Resumo:
Iowa Plumber, Mechanical Professional, and Contractor Licensing Board (PMB) submits the following annual budget report to the Iowa State Legislature. Iowa Code 105.9 requires the board to demonstrate that revenues remain within 10% of expenditures over a period of at least three years
Resumo:
Iowa Plumber, Mechanical Professional, and Contractor Licensing Board (PMB) submits the following annual budget report to the Iowa State Legislature. Iowa Code 105.9 requires the board to demonstrate that revenues remain within 10% of expenditures over a period of at least three years