2 resultados para Mean squared error
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Reliable estimates of heavy-truck volumes are important in a number of transportation applications. Estimates of truck volumes are necessary for pavement design and pavement management. Truck volumes are important in traffic safety. The number of trucks on the road also influences roadway capacity and traffic operations. Additionally, heavy vehicles pollute at higher rates than passenger vehicles. Consequently, reliable estimates of heavy-truck vehicle miles traveled (VMT) are important in creating accurate inventories of on-road emissions. This research evaluated three different methods to calculate heavy-truck annual average daily traffic (AADT) which can subsequently be used to estimate vehicle miles traveled (VMT). Traffic data from continuous count stations provided by the Iowa DOT were used to estimate AADT for two different truck groups (single-unit and multi-unit) using the three methods. The first method developed monthly and daily expansion factors for each truck group. The second and third methods created general expansion factors for all vehicles. Accuracy of the three methods was compared using n-fold cross-validation. In n-fold cross-validation, data are split into n partitions, and data from the nth partition are used to validate the remaining data. A comparison of the accuracy of the three methods was made using the estimates of prediction error obtained from cross-validation. The prediction error was determined by averaging the squared error between the estimated AADT and the actual AADT. Overall, the prediction error was the lowest for the method that developed expansion factors separately for the different truck groups for both single- and multi-unit trucks. This indicates that use of expansion factors specific to heavy trucks results in better estimates of AADT, and, subsequently, VMT, than using aggregate expansion factors and applying a percentage of trucks. Monthly, daily, and weekly traffic patterns were also evaluated. Significant variation exists in the temporal and seasonal patterns of heavy trucks as compared to passenger vehicles. This suggests that the use of aggregate expansion factors fails to adequately describe truck travel patterns.
Resumo:
A statewide study was conducted to develop regression equations for estimating flood-frequency discharges for ungaged stream sites in Iowa. Thirty-eight selected basin characteristics were quantified and flood-frequency analyses were computed for 291 streamflow-gaging stations in Iowa and adjacent States. A generalized-skew-coefficient analysis was conducted to determine whether generalized skew coefficients could be improved for Iowa. Station skew coefficients were computed for 239 gaging stations in Iowa and adjacent States, and an isoline map of generalized-skew-coefficient values was developed for Iowa using variogram modeling and kriging methods. The skew map provided the lowest mean square error for the generalized-skew- coefficient analysis and was used to revise generalized skew coefficients for flood-frequency analyses for gaging stations in Iowa. Regional regression analysis, using generalized least-squares regression and data from 241 gaging stations, was used to develop equations for three hydrologic regions defined for the State. The regression equations can be used to estimate flood discharges that have recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years for ungaged stream sites in Iowa. One-variable equations were developed for each of the three regions and multi-variable equations were developed for two of the regions. Two sets of equations are presented for two of the regions because one-variable equations are considered easy for users to apply and the predictive accuracies of multi-variable equations are greater. Standard error of prediction for the one-variable equations ranges from about 34 to 45 percent and for the multi-variable equations range from about 31 to 42 percent. A region-of-influence regression method was also investigated for estimating flood-frequency discharges for ungaged stream sites in Iowa. A comparison of regional and region-of-influence regression methods, based on ease of application and root mean square errors, determined the regional regression method to be the better estimation method for Iowa. Techniques for estimating flood-frequency discharges for streams in Iowa are presented for determining ( 1) regional regression estimates for ungaged sites on ungaged streams; (2) weighted estimates for gaged sites; and (3) weighted estimates for ungaged sites on gaged streams. The technique for determining regional regression estimates for ungaged sites on ungaged streams requires determining which of four possible examples applies to the location of the stream site and its basin. Illustrations for determining which example applies to an ungaged stream site and for applying both the one-variable and multi-variable regression equations are provided for the estimation techniques.