8 resultados para Matrix permeability

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resource Mapping tool from the Improving Transition Outcomes Resource Mapping Workshops

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efforts to eliminate rutting on the Interstate system have resulted in 3/4 in. aggregate mixes, with 75 blow Marshall, 85% crushed aggregate mix designs. On a few of these projects paved in 1988-1989, water has appeared on the surfaces. Some conclusions have been reached by visual on-sight investigations that the water is coming from surface water, rain and melting snow gaining entry into the surface asphalt mixture, then coming back out in selected areas. Cores were taken from several Interstate projects and tested for permeability to investigate the surface water theory that supposedly happens with only the 3/4 in. mixtures. All cores were of asphalt overlays over portland cement concrete, except for the Clarke County project which is full depth AC. The testing consisted of densities, permeabilities, voids by high pressure airmeter (HPAM), extraction, gradations, AC content, and film thicknesses. Resilient modulus, indirect tensile and retained strengths after freeze/thaw were also done. All of the test results are about as expected. Permeabilities, the main reason for testing, ranged from 0.00 to 2.67 ft per day and averages less than 1/2 ft per day if the following two tests are disregarded. One test on each binder course came out to 15.24 ft/day, and a surface course at 13.78 ft/day but these are not out of supposedly problem projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this research was to evaluate the materials Iowa uses as a granular subbase and to determine if it provides adequate drainage. Numerous laboratory and in-situ tests were conducted on the materials currently being used in Iowa. The follow conclusions can be made based on the test results: 1. The crushed concrete that is used as a subbase material has a relatively low permeability compared to many other materials used by other states. 2. Further research and tests are needed to find the necessary parameters for crushed concrete to make sure it is providing its optimum drainage and preventing premature damage of the pavement. 3. We have definitely made improvements in drainage in the past few months, but there are many areas that we can improve on that will increase the permeability of this material and insure that the pavement system is safe from premature damage due to water. The current gradation specification for granular subbase material at the start of this study was: Sieve # % Passing 1” 100 #8 10-35 #50 0-15 #200 0-6

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The penetration of chloride ions from deicing salts into the portland cement concrete of bridge decks can cause corrosion and serious damage to the reinforcing steel. Concrete properties which prevent chloride penetration into the bridge deck and provide a good structural and economic wearing surface are desirable. A variety of mix designs have been tried in the past in search of improved performance and lower costs for bridge deck overlay concrete. A group of mixes with various designs have been tested in this project and results are being compared to determine which concrete mix appears to be the most cost effective and resistant to chloride penetration for bridge deck overlay use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Iowa D.O.T. Laboratory built machine was constructed for the chloride permeability testing of concrete by measuring electric current through a specimen between a salt solution and a base solution. This study had two purposes. The first was to evaluate the machine's performance. To do this, three concrete mixes were made consisting of different cement factors and water/cement ratios. Each mix was tested for chloride ion content by the 90- day salt ponding method and for chloride permeability at a 28-day cure by the permeability machine. The results from each test were evaluated to see if there was correlation between chloride ion content and the chloride permeability. It was determined that there was a correlation and that the permeability machine was satisfactory for determining chloride permeability in concrete. The second purpose of this study was to examine the effects that pozzolans have on the chloride permeability of concrete. Four mixes were made: one without any pozzolans as a control, one with class C fly ash, one with class F fly ash, and one with silica fume. Specimens from each mix were evaluated for chloride ion content by the 90-day salt ponding test and by the laboratory built machine for chloride permeability after curing 28 days. Specimens from these mixes were also taken from the salt ponding slabs after completion of the ponding test to examine the effect chloride ion content has on the operation of the chloride permeability machine. Specimens containing pozzolans were also examined for chloride permeability after a cure of 180 days. It was determined that the addition of pozzolans to concrete lowers the chloride permeability as measured by the permeability machine. Class F fly ash and silica fume in the concrete had a major effect in lowering the chloride permeability in concrete as measured by the permeability machine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concrete durability may be considered as the ability to maintain serviceability over the design life without significant deterioration, and is generally a direct function of the mixture permeability. Therefore, reducing permeability will improve the potential durability of a given mixture and, in turn, improve the serviceability and longevity of the structure. Given the importance of this property, engineers often look for methods that can decrease permeability. One approach is to add chemical compounds known as integral waterproofing admixtures or permeability-reducing admixtures, which help fill and block capillary pores in the paste. Currently, there are no standard approaches to evaluate the effectiveness of permeability-reducing admixtures or to compare different products in the US. A review of manufacturers’ data sheets shows that a wide range of test methods have been used, and rarely are the same tests used on more than one product. This study investigated the fresh and hardened properties of mixtures containing commercially available hydrophilic and hydrophobic types of permeability-reducing admixtures. The aim was to develop a standard test protocol that would help owners, engineers, and specifiers compare different products and to evaluate their effects on concrete mixtures that may be exposed to hydrostatic or non-hydrostatic pressure. In this experimental program, 11 concrete mixtures were prepared with a fixed water-to-cement ratio and cement content. One plain mixture was prepared as a reference, 5 mixtures were prepared using the recommended dosage of the different permeability-reducing admixtures, and 5 mixtures were prepared using double the recommended dosage. Slump, air content, setting time, compressive and flexural strength, shrinkage, and durability indicating tests including electrical resistivity, rapid chloride penetration, air permeability, permeable voids, and sorptivity tests were conducted at various ages. The data are presented and recommendations for a testing protocol are provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Portland cement concrete pavements have given excellent service history for Iowa. Many of these pavements placed during the 1920’s and 1930’s are still in service today. Many factors go in to achieve a long term durable concrete pavement. Probably the most important is the durability of the aggregate. Until the 1930’s, pit run gravel was the most predominant aggregate used. Many of these gravels provided long term performance and their durability is dependent upon the carbonate fraction of the gravel. Later, limestone (calcium carbonate) and dolomite (calcium, magnesium carbonate) sources were mined across Iowa. The durability of these carbonate aggregates is largely dependent upon the pore system which can cause freeze thaw problems known as D-cracking, which was a problem with some sources during the 1960’s. Also, some of these carbonate aggregates are also susceptible to deterioration from deicing salts. Geologists have identified the major components that affect the durability of these carbonate aggregates and sources are tested to ensure long term performance in Portland cement concrete. Air entrainment was originally put in concrete to improve scaling resistance. It is well known that air entrainment is required to provide freeze thaw protection in concrete pavements today. In Iowa, air entrainment was not introduced in concrete pavements until 1952. This research investigates properties that made older concrete pavements durable without air entrainment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study is to investigate the effect of low-permeability concrete, made with reduced water‐to‐binder ratios (w/b) and/or supplementary cementitious materials (SCMs), on the need for air entrainment to achieve freezing‐thawing (F‐T) durability. In the present study, concrete mixes were made with different types of cement (Types I and IP), with or without fly ash replacement (15%), with different water‐to‐binder ratios (w/b =0.25, 0.35, 0.45 and 0.55), and with or without air entraining agent (AEA). All concrete mixtures were controlled to have a similar slump by using different dosages of superplasticizer. The rapid chloride permeability and F-T durability of the concrete samples were determined according to ASTM C1202 and ASTM C666A, respectively. The air void structure of the concrete was studied using the Air Void Analyzer, RapidAir, and porosity tests (ASTM C642). In addition, the general concrete properties, such as slump, air content, unit weight, and 28‐day compressive strength, were evaluated. The results indicate that all concrete mixes with proper air entrainment (ASTM C231 air content ≥ 6%) showed good F‐T resistance (durability factor ≥85%). All concrete mixes without AEA showed poor F‐T resistance (durability factor < 40%), except for one mix that had very low permeability and high strength. This was the concrete made with Type IP cement and with a w/b of 0.25, which had a permeability of 520 coulombs and a compressive strength of 12,760 psi (88 MPa). There were clear relationships between the F‐T durability and hardened concrete properties of non–air entrained concrete. However, such relationships did not exist in concrete with AEA. For concrete with AEA, good F‐T durability was associated with an air void spacing factor ≤ 0.28 mm (by AVA) or ≤ 0.22 mm (by RapidAir).